当前位置: 首页 > news >正文

粘包/半包及解决方案

一、粘包/半包介绍

1:粘包

粘包(Packet Concatenation)通常发生在基于流式传输协议(如 TCP)的通信中,因为 TCP 是面向流的传输协议,它不保证数据包的边界,而是将数据视为连续的字节流,它表示客户端发送多条消息,服务端只收到了一条消息

2:半包

半包(Half Packet)与粘包问题相反。在半包问题中,接收端接收到的数据包不完整,即接收到的数据包只是完整数据包的一部分,无法完整地解析和处理。

3:原因

①网络延迟/阻塞

②发送方连续发送数据

③接收端缓冲区大小限制

④数据包丢失

二、粘包/半包解决方案

1:长度信息法

在每个数据包前面加上长度信息,每次接收数据后,先读取长度,如果缓冲区数据长度大于要取的字节数,则取出相应字节,否则等待下一次接收,举个例子

①客户端第一次发送包含长度信息的内容

②客户端第二次发送包含长度信息的内容

③服务端第一次接收到了4个字节,存入缓冲区,但是这时候并不处理,因为收到了10,所以要等到11个字节完整再处理

④服务端等到客户端发送剩下的7个字节,但是第二次接收到了9个字节,服务端把之前的6个字节再读取,然后拼接,把10helloworld进行处理,读取到标志长度4,等待下次处理

⑤服务端最后一次收到ove,就把之前的l一起拼接,返回完整的4love

*一般的游戏是16位的整型数来存放长度信息

2:固定长度法

每次都发送相同长度的数据,一次不足的数据用.来补充,.位补充字符,没有实际意义

如果接收到的字符数大于10,就只提取前10个字符

3:结束符号法

规定一个结束符号作为消息的分隔符,比如Hello$World就是两条信息

三、代码示例

1:发送数据
        byte[] bodyBytes = System.Text.Encoding.Default.GetBytes(SendStr);Int16 len = (Int16)bodyBytes.Length;//把长度转化为Int16byte[] lenBytes = BitConverter.GetBytes(len);//此时SendBytes包含长度字符串和内容字符串byte[] sendBytes = lenBytes.Concat(bodyBytes).ToArray();

2:接收数据

定义一个接收缓冲区和接收缓冲区长度。缓冲区会保存尚未处理的数据

    //接收缓冲区byte[] readBuff = new byte[1024];//接收缓冲区长度int buffCount = 0;

之前的BeginReceive函数原型如下:

public IAsyncResult BeginReceive (  byte[] buffer,  int offset,  int size,  SocketFlags socketFlags,  AsyncCallback callback, object state )

现在的参数应该写成这个样子:

socket.BeginReceive(readBuff, buffCount 1024-buffCount, 0,  ReceiveCallback, socket);

readBuff 是缓冲区

buffCount 是开始读取的位置

1024 - buffCount 是剩余多少可读取的大小

3:处理数据

public void OnReceiveData(){//消息长度小于2,直接返回等待下一次接收if(buffCount <= 2)return;//消息的长度Int16 bodyLength = BitConverter.ToInt16(readBuff, 0);//消息体//如果消息长度小于我消息内容和长度的字节,就返回继续读取if(buffCount < 2+bodyLength)return;//如果长度够用,就转化为string类型string s = System.Text.Encoding.UTF8.GetString(readBuff, 2,buffCount);//更新缓冲区int start = 2 + bodyLength;int count = buffCount - start;//Copy函数把缓冲区后面的内容提到前面Array.Copy(readBuff, start, readBuff, 0, count);buffCount -= start;//继续读取消息if(readBuff.length > 2){OnReceiveData();}
}

Copy的原型函数如下:

public static void Copy(Array sourceArray,//源数组long sourceIndex,//目标数据Array destinationArray,//目标数组long destinationIndex,//目标数组起始位置long length//复制消息的长度
)

四、完整示例

1:客户端
using System;
using System.Linq;
using System.Net.Sockets;
using UnityEngine;
using UnityEngine.UI;public class SendScr : MonoBehaviour
{Socket socket;public InputField inputField;public Text text;byte[] readBuff = new byte[1024];int buffCount = 0;//缓冲区数据长度string recvStr = "";public void Connection(){socket = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp);socket.Connect("127.0.0.1", 8888);socket.BeginReceive(readBuff, buffCount, 1024 - buffCount, 0, ReceiveCallback, socket);}private void ReceiveCallback(IAsyncResult ar){try{Socket socket = (Socket)ar.AsyncState;//获取接收数据长度int count = socket.EndReceive(ar);buffCount += count;//处理二进制消息OnReceiveData();//继续接收数据socket.BeginReceive(readBuff, buffCount, 1024 - buffCount, 0, ReceiveCallback, socket);}catch (SocketException ex){Debug.Log("Socket Receive fail" + ex.ToString());}}private void OnReceiveData(){Debug.Log("[Recv 1] buffCount = " + buffCount);Debug.Log("[Recv 2] readbuff = " + BitConverter.ToString(readBuff));if (buffCount <= 2) return;Int16 bodyLength = BitConverter.ToInt16(readBuff, 0);Debug.Log("[Recv 3] bodyLength=" + bodyLength);//消息体if (buffCount < 2 + bodyLength) return;string s = System.Text.Encoding.UTF8.GetString(readBuff, 2, buffCount);Debug.Log("[Recv 4] s=" + s);//更新缓冲区int start = 2 + bodyLength;int count = buffCount - start;Array.Copy(readBuff, start, readBuff, 0, count);buffCount -= start;Debug.Log("[Recv 5] buffCount=" + buffCount);//消息处理recvStr = s + "\n" + recvStr;//继续读取消息OnReceiveData();}public void Send(){string sendStr = inputField.text;byte[] bodyBytes = System.Text.Encoding.Default.GetBytes(sendStr);Int16 len = (Int16)bodyBytes.Length;byte[] lenBytes = BitConverter.GetBytes(len);//此时SendBytes包含长度字符串和内容字符串byte[] sendBytes = lenBytes.Concat(bodyBytes).ToArray();socket.Send(sendBytes);Debug.Log("[Send]" + BitConverter.ToString(sendBytes));}private void Update(){text.text = recvStr;}}

捋一下客户端的功能:

当进入场景点击Connection,创建新的Socket连接,绑定服务端口,开始接收信息

这里的BeginReceive就是我们接受消息的函数,它传入我们的缓冲区readBuff,缓冲区长度buffCount,1024 - buffCount表示我们还剩多少字节数据,然后进入回调函数

Receive回调函数中创建新的Socket对象来解析获取到的socket对象,count用于跟踪每次异步接收操作实际接收到的数据长度,然后把count加到buffCount上,这样更新了缓冲区的长度

然后使用OnReceiveData处理数据,继续读取数据,点击发送就调用Send()

2:服务端
using System.Net.Sockets;
using System.Net;
internal class ClientState
{public Socket socket;public byte[] readBuff = new byte[1024];
}
class Class
{static Socket listenfd;static Dictionary<Socket, ClientState> clients = new Dictionary<Socket, ClientState>();public static void Main(string[] args){listenfd = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp);IPAddress ipAdr = IPAddress.Parse("127.0.0.1");IPEndPoint ipEp = new IPEndPoint(ipAdr, 8888);listenfd.Bind(ipEp);listenfd.Listen(0);Console.WriteLine("[服务器]启动成功");List<Socket> checkRead = new List<Socket>();while (true){//填充checkRead列表checkRead.Clear();checkRead.Add(listenfd);foreach (ClientState s in clients.Values){checkRead.Add(s.socket);}//selectSocket.Select(checkRead, null, null, 1000);//检查可读对象foreach (Socket s in checkRead){if (s == listenfd){ReadListenfd(s);}else{ReadClientfd(s);}}}}public static void ReadListenfd(Socket listenfd){Console.WriteLine("Accept");Socket clientfd = listenfd.Accept();ClientState state = new ClientState();state.socket = clientfd;clients.Add(clientfd, state);}public static bool ReadClientfd(Socket clientfd){ClientState state = clients[clientfd];//接收int count = clientfd.Receive(state.readBuff);if (count == 0){clientfd.Close();clients.Remove(clientfd);Console.WriteLine("Socket Close");return false;}//广播string recvStr = System.Text.Encoding.Default.GetString(state.readBuff, 2, count - 2);Console.WriteLine("Receive" + recvStr);byte[] sendBytes = new byte[count];Array.Copy(state.readBuff, 0, sendBytes, 0, count);foreach (ClientState cs in clients.Values){cs.socket.Send(sendBytes);}return true;}
}

这里的服务端代码和Select部分的代码基本相同

3:测试

打开服务器,客户端连接后输入UNITY

①客户端反馈

Recv1的buffCount就是接收到服务端所返回的消息,服务端所返回的信息是客户端发送的拼接数组,就是UNITY+lenBytes,就是7

Rec2的readbuff就是缓冲区存储的内容

Recv3是当消息没有接受完整的时候的消息本体长度

Recv4是完整的消息内容

Recv5是接受完成UNITY后更新后的新buffCount新长度,因为没有后续的,所以是0

②服务端反馈

服务端接受到的消息

四、模拟粘包

客户端修改

using System;
using System.Linq;
using System.Net.Sockets;
using UnityEngine;
using UnityEngine.UI;public class SendScr : MonoBehaviour
{Socket socket;public InputField inputField;public Text text;byte[] readBuff = new byte[1024];int buffCount = 0;//缓冲区数据长度string recvStr = "";public void Connection(){socket = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp);socket.Connect("127.0.0.1", 8888);socket.BeginReceive(readBuff, buffCount, 1024 - buffCount, 0, ReceiveCallback, socket);}private void ReceiveCallback(IAsyncResult ar){try{Socket socket = (Socket)ar.AsyncState;//获取接收数据长度int count = socket.EndReceive(ar);buffCount += count;//处理二进制消息OnReceiveData();System.Threading.Thread.Sleep(1000*30);//继续接收数据socket.BeginReceive(readBuff, buffCount, 1024 - buffCount, 0, ReceiveCallback, socket);}catch (SocketException ex){Debug.Log("Socket Receive fail" + ex.ToString());}}private void OnReceiveData(){Debug.Log("[Recv 1] buffCount = " + buffCount);Debug.Log("[Recv 2] readbuff = " + BitConverter.ToString(readBuff));if (buffCount <= 2) return;Int16 bodyLength = BitConverter.ToInt16(readBuff, 0);Debug.Log("[Recv 3] bodyLength=" + bodyLength);//消息体if (buffCount < 2 + bodyLength) return;string s = System.Text.Encoding.UTF8.GetString(readBuff, 2, buffCount);Debug.Log("[Recv 4] s=" + s);//更新缓冲区int start = 2 + bodyLength;int count = buffCount - start;Array.Copy(readBuff, start, readBuff, 0, count);buffCount -= start;Debug.Log("[Recv 5] buffCount=" + buffCount);//消息处理recvStr = s + "\n" + recvStr;//继续读取消息OnReceiveData();}public void Send(){string sendStr = inputField.text;byte[] bodyBytes = System.Text.Encoding.Default.GetBytes(sendStr);Int16 len = (Int16)bodyBytes.Length;byte[] lenBytes = BitConverter.GetBytes(len);//此时SendBytes包含长度字符串和内容字符串byte[] sendBytes = lenBytes.Concat(bodyBytes).ToArray();socket.Send(sendBytes);Debug.Log("[Send]" + BitConverter.ToString(sendBytes));}private void Update(){text.text = recvStr;}}

*在接收数据的时候,强制等待30s再进行下一次接收,ReceiveCallback是在子线程执行,调用Sleep函数并不会卡住主线程,客户端不会被卡住,在30s内多次发送数据,经由服务端转发,再次调用BeginReceive的时候,缓冲区有很多数据,会产生粘包。

客户端快速发送三条消息,发送不会堵塞,每次接收都会等待30s,但是接收到的消息不是在一起的,而是分开的

相关文章:

粘包/半包及解决方案

一、粘包/半包介绍 1&#xff1a;粘包 粘包&#xff08;Packet Concatenation&#xff09;通常发生在基于流式传输协议&#xff08;如 TCP&#xff09;的通信中&#xff0c;因为 TCP 是面向流的传输协议&#xff0c;它不保证数据包的边界&#xff0c;而是将数据视为连续的字节…...

2024华为软件精英挑战赛记录

前言 本次主要是记录自己第一次参加华为软件挑战赛的经历。第一次参加比赛还是缺少经验&#xff0c;训练赛中拿到赛区的20多名&#xff0c;最后在正式赛中被反超了&#xff0c;只拿了40多名&#xff0c;实在是感到可惜。 题目&#xff1a;本次题目是一个智慧港口的问题。10个机…...

数据可视化艺术:Matplotlib与Seaborn实战

目录 1.Matplotlib基础绘图与定制化 1.1. 基础绘图 1.2. 定制化 2.Seaborn高级图表类型与样式设定 2.1. 高级图表类型 2.2. 样式设定 3.实战&#xff1a;绘制多维度数据可视化报告 4.总结 1. 前言 在数据科学领域&#xff0c;数据可视化扮演着至关重要的角色。通过图形化…...

python初级第一次作业

一、 dayint(input("enter today day")) fdayint(input("enter num of day since today")) c((fday%7)day)%7 if c0:print("sunday") elif c1:print("monday") elif c2:print("tuesday") elif c3:print("wendnsday&quo…...

Spring Boot整合Camunda打造高效工作流程

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是尘缘&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f449;点击这里&#xff0c;就可以查看我的主页啦&#xff01;&#x1f447;&#x…...

2.8、下拉刷新与上拉加载

页面的下拉刷新与上拉加载功能在移动应用中十分常见,例如,新闻页面的内容刷新和加载。这两种操作的原理都是通过响应用户的触摸事件,在顶部或者底部显示一个刷新或加载视图,完成后再将此视图隐藏。 实现思路 以下拉刷新为例,其实现主要分成三步: 监听手指按下事件,记录…...

java Web餐馆订单管理系统用eclipse定制开发mysql数据库BS模式java编程jdbc

一、源码特点 JSP 餐馆订单管理系统是一套完善的web设计系统&#xff0c;对理解JSP java 编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为TOMCAT7.0,eclipse开发&#xff0c;数据库为Mysql5.0&#xff0c;使…...

小程序从入门到入坑:事件系统

前言 哈喽大家好&#xff0c;我是 SuperYing&#xff0c;本文是小程序从入门到入坑系列的第 3 篇&#xff0c;将比较详尽的讲解 小程序事件系统 的相关知识点&#xff0c;欢迎小伙伴阅读。 读完本文您将收获&#xff1a; 了解小程序事件及基础使用。了解小程序事件分类及多种的…...

Windows蓝牙驱动开发之模拟HID设备(二)(把Windows电脑模拟成蓝牙鼠标和蓝牙键盘等设备)

by fanxiushu 2024-03-24 转载或引用请注明原作者 接上文,当我们建立了蓝牙链接请求之后,就该传输数据了, 其实传输数据比起上章阐述的创建SDP和建立连接要简单许多。 使用类型 BRB_L2CA_ACL_TRANSFER 的BRB请求,就可以实现接收和发送操作, 至于具体是接收还是发送,根据设…...

快速区分清楚图形渲染中的AABB,KD树和BVH这些概念

快速区分清楚图形渲染中的AABB&#xff0c;KD树和BVH这些概念 主要想形象去区分好这些术语&#xff0c;目的是扫盲&#xff0c;先开好坑&#xff0c;内容持续填充。 0.先摆出这些词的全称 AABB&#xff1a; 原名&#xff1a;axis aligned bounding box&#xff1b;中文直译名…...

Rust 的 HashMap 特定键值元素值的累加方法

在Rust中&#xff0c;如果你想要对HashMap中特定键对应的值进行累加操作&#xff0c;你需要首先检查该键是否已存在。如果存在&#xff0c;则取出其值&#xff0c;进行累加&#xff0c;然后将结果存回HashMap。如果不存在&#xff0c;则可能需要插入一个新的键值对&#xff0c;…...

Java后端项目性能优化实战-群发通知

背景 公司群发通知模块性能存在问题&#xff0c;我进行全面的系统调优&#xff0c;系统处理能力大幅提升。 原发送流程 优化后的发送流程 优化的点 说明&#xff1a;以下问题基本都是压测过程遇到的&#xff0c;有些问题普通的功能测试暴露不了。优化目标&#xff1a;保证高…...

5、Jenkins持续集成-Maven和Tomcat的安装与配置

文章目录 一、Maven的安装与配置1、安装maven并配置环境2、全局工具配置关联jdk和maven3、添加Jenkins全局变量4、修改settings.xml文件5、测试是否配置成功二、Tomcat的安装与配置1、安装tomcat8+2、配置Tomcat用户角色权限3、测试是否配置成功一、Maven的安装与配置 在Jenki…...

Qt教程 — 3.7 深入了解Qt 控件: Layouts部件

目录 2 如何使用Layouts部件 2.1 QBoxLayout组件-垂直或水平布局 2.2 QGridLayout组件-网格布局 2.3 QFormLayout组件-表单布局 在Qt中&#xff0c;布局管理器&#xff08;Layouts&#xff09;是用来管理窗口中控件位置和大小的重要工具。布局管理器可以确保窗口中的控件在…...

自动驾驶的几种名词

1. 自适应巡航控制&#xff08;ACC&#xff09; 自适应巡航控制&#xff08;Adaptive Cruise Control&#xff0c;ACC&#xff09;是一种汽车驾驶辅助系统&#xff0c;它可以根据前方车辆的速度和距离自动调整车辆的速度&#xff0c;以保持与前车的安全距离。ACC系统由控制层和…...

华为全套企业管理资料合集(21专题)

华为全套企业管理资料合集-知识星球下载 1.绩效考核 华为内训绝密资料:绩效管理与绩效考核.ppt 华为绩效管理与绩效考核制度.docx 华为公司实用性各种绩效图表汇总.doc 华为公司考勤管理制度.doc 华为IPD模式中跨部门团队成员的考核激励制度.doc 2.企业管理 华为公司人力资源…...

LeetCode Python - 74. 搜索二维矩阵

目录 题目描述解法方法一&#xff1a;二分查找方法二&#xff1a;从左下角或右上角搜索 运行结果方法一方法二 题目描述 给你一个满足下述两条属性的 m x n 整数矩阵&#xff1a; 每行中的整数从左到右按非严格递增顺序排列。每行的第一个整数大于前一行的最后一个整数。 给…...

如何安全地添加液氮到液氮罐中

液氮是一种极低温的液体&#xff0c;它在许多领域广泛应用&#xff0c;但在处理液氮时需谨慎小心。添加液氮到液氮罐中是一个常见的操作&#xff0c;需要遵循一些安全准则以确保操作人员的安全和设备的完整性。 选择合适的液氮容器 选用专业设计用于存储液氮的容器至关重要。…...

LGBM算法 原理

简介 GBDT (Gradient Boosting Decision Tree) 是机器学习中一个长盛不衰的模型&#xff0c;其主要思想是利用弱分类器&#xff08;决策树&#xff09;迭代训练以得到最优模型&#xff0c;该模型具有训练效果好、不易过拟合等优点。GBDT不仅在工业界应用广泛&#xff0c;通常被…...

【WPF应用5】WPF中的TextBlock控件:属性与事件详解及示例

在WPF&#xff08;Windows Presentation Foundation&#xff09;开发中&#xff0c;TextBlock控件是一个常用的元素&#xff0c;用于显示静态或动态文本内容。它提供了丰富的属性和事件&#xff0c;使得开发者能够灵活地控制文本的显示样式和响应用户的交互行为。本文将详细介绍…...

SDC命令详解:使用set_propagated_clock命令进行约束

相关阅读 SDC命令详解https://blog.csdn.net/weixin_45791458/category_12931432.html?spm1001.2014.3001.5482 目录 指定端口列表/集合 简单使用 注意事项 传播时钟是在进行了时钟树综合后&#xff0c;使用set_propagated_clock命令可以将一个理想时钟转换为传播时钟&#x…...

第23讲、Odoo18 邮件系统整体架构

目录 Odoo 邮件系统整体架构邮件发送方式邮件模板配置SMTP 邮件服务器配置邮件发送过程开发中常见邮件发送需求常见问题排查提示与最佳实践完整示例&#xff1a;审批通过自动发邮件门户表单自动邮件通知案例邮件队列与异步发送邮件添加附件邮件日志与调试多语言邮件模板邮件安…...

为什么 uni-app 开发的 App 没有明显出现屏幕适配问题Flutter 开发的 App 出现了屏幕适配问题

&#x1f9e9; 一、为什么 uni-app 开发的 App 没有明显出现屏幕适配问题&#xff1f; ✅ 1. uni-app 是基于 H5 的运行环境&#xff08;或类 H5&#xff09; uni-app 默认使用的是 H5 的渲染引擎&#xff08;如 WebView 或小程序渲染引擎&#xff09;。在 H5 中&#xff0c;…...

FineReport模板认证找不到模板

水善利万物而不争&#xff0c;处众人之所恶&#xff0c;故几于道&#x1f4a6; 文章目录 1.现象及排查过程2. 解决办法 1.现象及排查过程 FR模板认证下面找不到模板 由于是集群部署的FR&#xff0c;所以后台查看了sftp服务器&#xff0c;测试连接&#xff0c;连接成功。 但是…...

《PMBOK® 指南》第八版草案重大变革:6 大原则重构项目管理体系

项目管理领域的权威指南迎来关键升级&#xff01;PMI 最新发布的《PMBOK 指南》第八版草案引发行业广泛关注&#xff0c;此次修订首次将项目管理原则浓缩为 6 大黄金法则&#xff0c;重构 7 大绩效域&#xff0c;并首度公开过程组与绩效域的映射关系。本文将全面解析新版核心变…...

Go 为何天生适合云原生?

当前我们正处在 AI 时代&#xff0c;但是在基础架构领域&#xff0c;仍然处在云原生时代。云原生仍然是当前时代的风口之一。作为一个 Go 开发者&#xff0c;职业进阶的下一站就是学习云原生技术。作为 Go 开发者学习云原生技术有得天独厚的优势&#xff0c;这是因为 Go 天生适…...

3.2 HarmonyOS NEXT跨设备任务调度与协同实战:算力分配、音视频协同与智能家居联动

HarmonyOS NEXT跨设备任务调度与协同实战&#xff1a;算力分配、音视频协同与智能家居联动 在万物互联的全场景时代&#xff0c;设备间的高效协同是释放分布式系统潜力的关键。HarmonyOS NEXT通过分布式任务调度技术&#xff0c;实现了跨设备算力动态分配与任务无缝流转&#…...

【行驶证识别成表格】批量OCR行驶证识别与Excel自动化处理系统,行驶证扫描件和照片图片识别后保存为Excel表格,基于QT和华为ocr识别的实现教程

在车辆管理、物流运输、保险理赔等领域&#xff0c;经常需要处理大量的行驶证信息。传统的人工录入方式效率低、易出错&#xff0c;而使用 OCR 技术可以自动识别行驶证图片中的文字信息&#xff0c;极大提高数据处理效率。该系统可以应用于以下场景&#xff1a; 保险公司快速…...

6.6本日总结

一、英语 复习默写list9list20 二、数学 学习线代第一讲&#xff0c;订正13讲1000题&#xff0c;写15讲课后题 三、408 学习计组2.2&#xff0c;写计组习题 四、总结 单词再背完一遍后背阅读词&#xff0c;未处理的习题堆积过多要及时处理 五、明日计划 英语&#xff…...

n皇后问题的 C++ 回溯算法教学攻略

一、问题描述 n皇后问题是经典的回溯算法问题。给定一个 nn 的棋盘&#xff0c;要求在棋盘上放置 n 个皇后&#xff0c;使得任何两个皇后之间不能互相攻击。皇后可以攻击同一行、同一列以及同一对角线上的棋子。我们需要找出所有的合法放置方案并输出方案数。 二、输入输出形…...