当前位置: 首页 > news >正文

LGBM算法 原理

简介

GBDT (Gradient Boosting Decision Tree) 是机器学习中一个长盛不衰的模型,其主要思想是利用弱分类器(决策树)迭代训练以得到最优模型,该模型具有训练效果好、不易过拟合等优点。GBDT不仅在工业界应用广泛,通常被用于多分类、点击率预测、搜索排序等任务。而LightGBM(Light Gradient Boosting Machine)是一个实现GBDT算法的框架,支持高效率的并行训练,并且具有更快的训练速度、更低的内存消耗、更好的准确率、支持分布式可以快速处理海量数据等优点。

提出的动机

常用的机器学习算法,例如神经网络等算法,都可以以mini-batch的方式训练,训练数据的大小不会受到内存限制。而GBDT在每一次迭代的时候,都需要遍历整个训练数据多次。如果把整个训练数据装进内存则会限制训练数据的大小;如果不装进内存,反复地读写训练数据又会消耗非常大的时间。尤其面对工业级海量的数据,普通的GBDT算法是不能满足其需求的。

LightGBM提出的主要原因就是为了解决GBDT在海量数据遇到的问题,让GBDT可以更好更快地用于工业实践。

XGBoost的缺点

在LightGBM提出之前,最有名的GBDT工具就是XGBoost了,它是基于预排序方法的决策树算法。这种构建决策树的算法基本思想是:首先,对所有特征都按照特征的数值进行预排序。其次,在遍历分割点的时候寻找一个特征上的最好分割点。最后,在找到一个特征的最好分割点后,将数据分裂成左右子节点。

这样的预排序算法的优点是能精确地找到分割点。但是缺点也很明显:首先,空间消耗大。这样的算法需要保存数据的特征值,还保存了特征排序的结果(例如,为了后续快速的计算分割点,保存了排序后的索引),这就需要消耗训练数据两倍的内存。其次,时间上也有较大的开销,在遍历每一个分割点的时候,都需要进行分裂增益的计算,消耗的代价大。最后,对cache优化不友好。在预排序后,特征对梯度的访问是一种随机访问,并且不同的特征访问的顺序不一样,无法对cache进行优化。同时,在每一层长树的时候,需要随机访问一个行索引到叶子索引的数组,并且不同特征访问的顺序也不一样,也会造成较大的cache miss。

LightGBM的优化

为了避免上述XGBoost的缺陷,并且能够在不损害准确率的条件下加快GBDT模型的训练速度,lightGBM在传统的GBDT算法上进行了如下优化:

  • 基于Histogram(直方图)的决策树算法。
  • 单边梯度采样 Gradient-based One-Side Sampling(GOSS):使用GOSS可以减少大量只具有小梯度的数据实例,这样在计算信息增益的时候只利用剩下的具有高梯度的数据就可以了,相比XGBoost遍历所有特征值节省了不少时间和空间上的开销。
  • 互斥特征捆绑 Exclusive Feature Bundling(EFB):使用EFB可以将许多互斥的特征绑定为一个特征,这样达到了降维的目的。
  • 带深度限制的Leaf-wise的叶子生长策略:大多数GBDT工具使用低效的按层生长 (level-wise) 的决策树生长策略,因为它不加区分的对待同一层的叶子,带来了很多没必要的开销。实际上很多叶子的分裂增益较低,没必要进行搜索和分裂。LightGBM使用了带有深度限制的按叶子生长 (leaf-wise) 算法。
  • 直接支持类别特征(Categorical Feature)
  • 支持高效并行
  • Cache命中率优化

LGBM原理:

1、基于Histogram的决策树算法

        (1)直方图算法

Histogram algorithm应该翻译为直方图算法,直方图算法的基本思想是:先把连续的浮点特征值离散化成data个整数,同时构造一个宽度为bins的直方图。在遍历数据的时候,根据离散化后的值作为索引在直方图中累积统计量,当遍历一次数据后,直方图累积了需要的统计量,然后根据直方图的离散值,遍历寻找最优的分割点。

直方图算法简单理解为:首先确定对于每一个特征需要多少个箱子(bin)并为每一个箱子分配一个整数;然后将浮点数的范围均分成若干区间,区间个数与箱子个数相等,将属于该箱子的样本数据更新为箱子的值;最后用直方图(#bins)表示。看起来很高大上,其实就是直方图统计,将大规模的数据放在了直方图中。

相关文章:

LGBM算法 原理

简介 GBDT (Gradient Boosting Decision Tree) 是机器学习中一个长盛不衰的模型,其主要思想是利用弱分类器(决策树)迭代训练以得到最优模型,该模型具有训练效果好、不易过拟合等优点。GBDT不仅在工业界应用广泛,通常被…...

【WPF应用5】WPF中的TextBlock控件:属性与事件详解及示例

在WPF(Windows Presentation Foundation)开发中,TextBlock控件是一个常用的元素,用于显示静态或动态文本内容。它提供了丰富的属性和事件,使得开发者能够灵活地控制文本的显示样式和响应用户的交互行为。本文将详细介绍…...

【C语言基础】:内存操作函数

文章目录 一、memcpy函数的使用和模拟实现1.1 memcpy函数的使用1.2 memcpy函数的模拟实现 二、memmove函数的使用和模拟实现2.1 memmove函数的使用2.2 memmove函数的模拟实现 三、memset函数的使用3.1 menset函数的使用 四、memcmp函数的使用4.1 memcmp函数的使用 学海无涯苦作…...

3.24作业

基于UDP的网络聊天室 项目需求: 如果有用户登录,其他用户可以收到这个人的登录信息如果有人发送信息,其他用户可以收到这个人的群聊信息如果有人下线,其他用户可以收到这个人的下线信息服务器可以发送系统信息 服务器端代码 #in…...

Excel双击单元格后弹窗输入日期

Step1. 在VBE界面新建一个窗体(Userform1),在窗体的工具箱的空白处右键,选中添加附件,勾选Calendar control 8.0,即可完成日历的添加。 PS:遗憾的是, Office 64 位没有官方的日期选择器控件。唯一的解决方案是使用Excel 的第三方日历。 参考链接:How to insert calen…...

原生 HTML/CSS/JS 实现右键菜单和二级菜单

文章来源:www.huhailong.vip 站点 文章源地址:https://www.huhailong.vip/article/1764653112011841538 Demo效果演示地址 先看效果图 {{{width“auto” height“auto”}}} 需要注意的就是边界检测处理,到极端点击底部和右侧时如果不做处理会…...

[项目前置]如何用webbench进行压力测试

测试软件 采用webbench进行服务器性能测试。 Webbench是知名的网站压力测试工具,它是由Lionbridge公司开发。 webbench的标准测试可以向我们展示服务器的两项内容: 每秒钟相应请求数 和 每秒钟传输数据量 webbench测试原理是,创建指定数…...

网络七层模型:理解网络通信的架构(〇)

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…...

format(C++20)

1. std::format format_01.cpp // g format_01.cpp -stdc20 #include <iostream> #include <string> #include <format>void test_01() {// 使用字符串填充std::cout << std::format("Hello {}!\n", "World"); // Hello World!…...

Ftrans安全数据摆渡系统 构建便捷的内外网数据交换通道

安全数据摆渡系统是一种设计用于解决内外网环境下&#xff0c;数据传输、管理、共享问题的安全系统&#xff0c;通过加密、访问控制等策略&#xff0c;提供安全可靠的数据传输和共享服务&#xff0c;尤其适用于对网络安全建设要求高的行业&#xff0c;比如研发型企业、党政机构…...

【云开发笔记No.14】持续交付、持续部署、持续交付流水线

一、持续交付 持续交付&#xff08;Continuous Delivery&#xff09;是一种软件开发方法论&#xff0c;它强调在开发过程中&#xff0c;软件可以在任何时间以最小的努力被部署到生产环境。其核心是确保代码更改在经过一系列自动化测试后&#xff0c;能够快速、安全地集成到主代…...

蓝桥杯练习07小兔子爬楼梯

小兔子爬楼梯 介绍 小兔子想去月球上旅行&#xff0c;假设小兔子拥有一个阶梯子&#xff0c;当你爬完层就可以到达月球&#xff0c;小兔子每次可以跳1或者2个台阶&#xff0c;小兔子有多少种跳法可以到达月球呢&#xff1f; 给定n是一个正整数&#xff0c;代表梯子的阶数&…...

Docker in Docker原理与实战

Docker in Docker (DinD) 是一种在Docker容器内部运行Docker的技术。它允许在一个Docker容器内部创建和管理其他的Docker容器&#xff0c;实现了一个容器内部的容器编排环境。本文将介绍Docker in Docker的原理&#xff0c;并给出一个实际的应用场景。 Docker in Docker的原理…...

Ruoyi若依框架下载流程详细解读(SpringBoot-Vue)

图解&#xff1a; 前端设计&#xff1a; 前端设计一个link文字连接或者按钮&#xff08;ElementUI&#xff09;Element - The worlds most popular Vue UI framework 前端请求设计&#xff1a; import request from /utils/request //下载示例模型定义语言的JSON export const…...

【深度学习】Pytorch中实现交叉熵损失计算的方式总结

在PyTorch中&#xff0c;计算交叉熵损失主要有以下几种方式&#xff0c;它们针对不同的场景和需求有不同的实现方式和适用范围&#xff1a; 1. nn.CrossEntropyLoss 类 这是最常用且方便的方法&#xff0c;特别适用于多分类任务。nn.CrossEntropyLoss 实际上是同时完成了 sof…...

机器学习:处理jira工单的分类问题

如何根据jira工单的category、reporter自动找到处理它的组呢?这是一个利用机器学习中knn算法的小实践. 目录 Knn算法 数据 示例 分割数据 选择Neighbors knn的优缺点 机器学习是一种技术,它的目的是给机器学习能力,让它们可以根据数据自己做决定,所以对于训练…...

后端常问面经之操作系统

请简要描述线程与进程的关系,区别及优缺点&#xff1f; 本质区别&#xff1a;进程是操作系统资源分配的基本单位&#xff0c;而线程是任务调度和执行的基本单位 在开销方面&#xff1a;每个进程都有独立的代码和数据空间&#xff08;程序上下文&#xff09;&#xff0c;程序之…...

RK3568平台 iperf3测试网络性能

一.iperf3简介 iperf是一款开源的网络性能测试工具&#xff0c;主要用于测量TCP和UDP带宽性能。它可以在不同的操作系统上运行&#xff0c;包括Windows、Linux、macOS等。iperf具有简单易用、功能强大、高度可配置等特点&#xff0c;广泛应用于网络性能测试、网络故障诊断和网…...

Spring Boot中实现对特定URL的权限验证:拦截器、切面和安全框架的比较

引言&#xff1a; 在开发Web应用程序时&#xff0c;对特定URL进行权限验证是一项常见的需求。在Spring Boot中&#xff0c;我们有多种选择来实现这一目标&#xff0c;其中包括使用拦截器、切面和专门的安全框架&#xff08;如Spring Security&#xff09;。本文将比较这三种方式…...

【能源数据分析-00】能源领域数据集集锦(动态更新)

一、前言 大数据科学在能源领域的深度应用&#xff0c;已经深刻改变了这一行业的垂直格局。它为我们提供了宝贵的见解&#xff0c;帮助降低下游市场的成本&#xff0c;使石油生产商能够更好地应对市场繁荣期的需求。近期&#xff0c;石油价格的剧烈下跌给全球经济带来了沉重打…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上&#xff0c;开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识&#xff0c;在 vs 2017 平台上&#xff0c;进行 ASP.NET 应用程序和简易网站的开发&#xff1b;初步熟悉开发一…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说&#xff0c;在叠衣服的过程中&#xff0c;我会带着团队对比各种模型、方法、策略&#xff0c;毕竟针对各个场景始终寻找更优的解决方案&#xff0c;是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...

[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG

TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码&#xff1a;HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...