【C语言基础】:内存操作函数
文章目录
- 一、memcpy函数的使用和模拟实现
- 1.1 memcpy函数的使用
- 1.2 memcpy函数的模拟实现
- 二、memmove函数的使用和模拟实现
- 2.1 memmove函数的使用
- 2.2 memmove函数的模拟实现
- 三、memset函数的使用
- 3.1 menset函数的使用
- 四、memcmp函数的使用
- 4.1 memcmp函数的使用
学海无涯苦作海
创作不易,宝子们!如果这篇文章对你们有帮助的话,别忘了给个免费的赞哟~
一、memcpy函数的使用和模拟实现
函数原型:
void * memcpy ( void * destination, const void * source, size_t num );
内存复制块
- 将num字节的值从源指向的位置直接复制到目标指向的内存块。
- 源指针和目标指针所指向的对象的底层类型与此函数无关;结果是数据的二进制副本。
- 该函数不检查源中是否有任何终止null字符——它总是精确地复制num个字节。
- 为了避免溢出,目标参数和源参数所指向的数组的大小应该至少为num字节,并且不应该重叠(对于重叠的内存块,memmove是一种更安全的方法)。
1.1 memcpy函数的使用
【示例】:将arr1中的前5个元素拷贝到arr2中
#include<stdio.h>
#include<string.h>int main()
{int arr1[] = { 1,2,3,4,5,6,7,8,9,10 };int arr2[20] = { 0 };memcpy(arr2, arr1, 20);for (int i = 0; i < 20; i++){printf("%d ", arr2[i]);}return 0;
}
1.2 memcpy函数的模拟实现
模拟思路:
函数参数和返回类型:mencpy不仅可以将拷贝整形数据,其他的数据类型也可以拷贝,即参数类型根据传入的数据类型决定,需要接受任意类型的地址,所以参数类型可以定义成void*,因为src是原数据,我们不期望它被修改,所以要加const进行修饰;还需要指定拷贝num字节的值,即num要为非负数,为了避免传入进来的num是一个负数,可以将num定为size_t类型,memcpy返回的是目标空间的起始地址,即返回类型我们也定为void* 。
函数体:首先用assert断言判断传入进来的是否为空指针;void* 类型的指针不可以直接解引用,这里的num是指字节数,不同的数据类型所占的字节数不同,所以最好一个一个字节访问,即将 void* 强转成 char* (解引用时一次访问一个字节)类型;每访问一个字节后就自增一,拷贝完成后,这时的dest已经不再指向首元素地址,所以在这之前要创建一个void* 的指针记录dest,最后返回记录dest的指针即可。
模拟代码:
#include<stdio.h>
#include<assert.h>void* my_memcpy(void* dest, const void* src, size_t num)
{assert(dest && src);void* ret = dest;while (num--){*(char*)dest = *(char*)src;src = (char*)src + 1;dest = (char*)dest + 1;}return ret;
}int main()
{int arr1[] = { 1,2,3,4,5,6,7,8,9,10 };int arr2[20] = { 0 };my_memcpy(arr2, arr1, 20);for (int i = 0; i < 20; i++){printf("%d ", arr2[i]);}return 0;
}
注意:memcpy函数不可以拷贝重叠的内存块(虽然也能实现)但不安全,对于重叠的内存块,memmove是一种更安全的方法。
二、memmove函数的使用和模拟实现
函数原型:
void * memmove ( void * destination, const void * source, size_t num );
移动内存块
- 将num字节的值从源指向的位置复制到目标指向的内存块。复制就像使用了中间缓冲区一样进行,从而允许目标和源重叠。
- 源指针和目标指针所指向的对象的底层类型与此函数无关;结果是数据的二进制副本。
- 该函数不检查源中是否有任何终止null字符——它总是精确地复制num个字节。
- 为了避免溢出,目的参数和源参数所指向的数组的大小至少为num字节。
memcpy与memmove的区别就在于memmove可以复制重叠的内存块。
2.1 memmove函数的使用
【示例】:将arr1中的1,2,3,4,5这几个元素拷贝到arr1中的3,4,5,6,7的位置。
#include<stdio.h>
#include<string.h>
int main()
{int arr1[] = { 1,2,3,4,5,6,7,8,9,10 };memmove(arr1 + 2, arr1, 5 * sizeof(int));for (int i = 0; i < 10; i++){printf("%d ", arr1[i]);}return 0;
}
2.2 memmove函数的模拟实现
模拟思路:
函数参数和返回类型:和memcpy函数一致,这里就不多作介绍了。
函数体:这里总体要分两种情况:一种是dest<src,另一种就是dest>src;对于第一种情况,需要从前向后拷贝,对于第二种情况,需要从后向前拷贝,至于不重叠的话,无论是从前向后还是从后向前都是可以的。从前向后拷贝的方法和memcpy是一致的,这里就不多说了;从后向前拷贝也比较简单,src强转成 char* 之后加上num就是最后一个字节,然后num不断自减,就可以实现从后向前拷贝。
模拟代码:
#include<stdio.h>
#include<assert.h>
void* my_memmove(void* dest, const void* src, size_t num)
{assert(dest && src);void* ret = dest;if (dest < src){// 前-->后while (num--){*(char*)dest = *(char*)src;src = (char*)src + 1;dest = (char*)dest + 1;}}else {// 后-->前while (num--){*((char*)dest + num) = *((char*)src + num);}}return ret;
}int main()
{int arr1[] = { 1,2,3,4,5,6,7,8,9,10 };my_memmove(arr1 + 2, arr1, 5 * sizeof(int));for (int i = 0; i < 10; i++){printf("%d ", arr1[i]);}return 0;
}
三、memset函数的使用
函数原型:
void * memset ( void * ptr, int value, size_t num );
填充内存块
将ptr指向的内存块的前num个字节设置为指定的值(解释为unsigned char)。
参数说明:
ptr
指向要填充的内存块的指针。
value
需要设置的值。该值作为int类型传递,但函数使用该值的unsigned char转换来填充内存块。
num
要设置为该值的字节数。size_t是一个无符号整型。
3.1 menset函数的使用
【示例】:将arr数组中的hello替换成x
#include<stdio.h>
#include<string.h>
int main()
{char arr[] = "hello world";memset(arr, 'x', 5);printf("%s\n", arr);return 0;
}
注意:这里的num指的是该值的字节数。
四、memcmp函数的使用
函数原型:
int memcmp ( const void * ptr1, const void * ptr2, size_t num );
比较两个内存块
将ptr1所指向的内存块的前num字节与ptr2所指向的前num字节进行比较,如果它们都匹配则返回0,如果不匹配则返回不同于0的值,表示哪个值更大。
参数说明:
ptr1
指向内存块的指针。
ptr2
指向内存块的指针。
num
要比较的字节数。
注意:与strcmp不同,该函数在找到空字符后不会停止比较。
return value(返回值) | indicates(含义) |
---|---|
<0 | 在两个内存块中不匹配的第一个字节在ptr1中的值低于ptr2中的值(如果作为unsigned char值计算) |
0 | 两个内存块的内容是相等的 |
.>0 | 在两个内存块中不匹配的第一个字节在ptr1中的值大于ptr2中的值(如果作为unsigned char值计算) |
4.1 memcmp函数的使用
【示例】:比较arr1数组和arr2数组中前16个字节;在比较前17个字节。
#include<stdio.h>
#include<string.h>
int main()
{int arr1[] = { 1,2,3,4,5,6,7 };int arr2[] = { 1,2,3,4,8,8,8 };int ret1 = memcmp(arr1, arr2, 16);int ret2 = memcmp(arr1, arr2, 17);printf("%d\n", ret1);printf("%d\n", ret2);return 0;
}
分析:一个整型占4个字节,比较前16个字节就是比较前4个元素,前4个元素都是一样的,所以返回0。但从17个字节开始,arr1和arr2数组就开始不同了,arr1是05,而arr2是08,08大于05,所以返回-1。
相关文章:

【C语言基础】:内存操作函数
文章目录 一、memcpy函数的使用和模拟实现1.1 memcpy函数的使用1.2 memcpy函数的模拟实现 二、memmove函数的使用和模拟实现2.1 memmove函数的使用2.2 memmove函数的模拟实现 三、memset函数的使用3.1 menset函数的使用 四、memcmp函数的使用4.1 memcmp函数的使用 学海无涯苦作…...

3.24作业
基于UDP的网络聊天室 项目需求: 如果有用户登录,其他用户可以收到这个人的登录信息如果有人发送信息,其他用户可以收到这个人的群聊信息如果有人下线,其他用户可以收到这个人的下线信息服务器可以发送系统信息 服务器端代码 #in…...

Excel双击单元格后弹窗输入日期
Step1. 在VBE界面新建一个窗体(Userform1),在窗体的工具箱的空白处右键,选中添加附件,勾选Calendar control 8.0,即可完成日历的添加。 PS:遗憾的是, Office 64 位没有官方的日期选择器控件。唯一的解决方案是使用Excel 的第三方日历。 参考链接:How to insert calen…...

原生 HTML/CSS/JS 实现右键菜单和二级菜单
文章来源:www.huhailong.vip 站点 文章源地址:https://www.huhailong.vip/article/1764653112011841538 Demo效果演示地址 先看效果图 {{{width“auto” height“auto”}}} 需要注意的就是边界检测处理,到极端点击底部和右侧时如果不做处理会…...

[项目前置]如何用webbench进行压力测试
测试软件 采用webbench进行服务器性能测试。 Webbench是知名的网站压力测试工具,它是由Lionbridge公司开发。 webbench的标准测试可以向我们展示服务器的两项内容: 每秒钟相应请求数 和 每秒钟传输数据量 webbench测试原理是,创建指定数…...

网络七层模型:理解网络通信的架构(〇)
🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…...
format(C++20)
1. std::format format_01.cpp // g format_01.cpp -stdc20 #include <iostream> #include <string> #include <format>void test_01() {// 使用字符串填充std::cout << std::format("Hello {}!\n", "World"); // Hello World!…...

Ftrans安全数据摆渡系统 构建便捷的内外网数据交换通道
安全数据摆渡系统是一种设计用于解决内外网环境下,数据传输、管理、共享问题的安全系统,通过加密、访问控制等策略,提供安全可靠的数据传输和共享服务,尤其适用于对网络安全建设要求高的行业,比如研发型企业、党政机构…...
【云开发笔记No.14】持续交付、持续部署、持续交付流水线
一、持续交付 持续交付(Continuous Delivery)是一种软件开发方法论,它强调在开发过程中,软件可以在任何时间以最小的努力被部署到生产环境。其核心是确保代码更改在经过一系列自动化测试后,能够快速、安全地集成到主代…...

蓝桥杯练习07小兔子爬楼梯
小兔子爬楼梯 介绍 小兔子想去月球上旅行,假设小兔子拥有一个阶梯子,当你爬完层就可以到达月球,小兔子每次可以跳1或者2个台阶,小兔子有多少种跳法可以到达月球呢? 给定n是一个正整数,代表梯子的阶数&…...
Docker in Docker原理与实战
Docker in Docker (DinD) 是一种在Docker容器内部运行Docker的技术。它允许在一个Docker容器内部创建和管理其他的Docker容器,实现了一个容器内部的容器编排环境。本文将介绍Docker in Docker的原理,并给出一个实际的应用场景。 Docker in Docker的原理…...

Ruoyi若依框架下载流程详细解读(SpringBoot-Vue)
图解: 前端设计: 前端设计一个link文字连接或者按钮(ElementUI)Element - The worlds most popular Vue UI framework 前端请求设计: import request from /utils/request //下载示例模型定义语言的JSON export const…...
【深度学习】Pytorch中实现交叉熵损失计算的方式总结
在PyTorch中,计算交叉熵损失主要有以下几种方式,它们针对不同的场景和需求有不同的实现方式和适用范围: 1. nn.CrossEntropyLoss 类 这是最常用且方便的方法,特别适用于多分类任务。nn.CrossEntropyLoss 实际上是同时完成了 sof…...
机器学习:处理jira工单的分类问题
如何根据jira工单的category、reporter自动找到处理它的组呢?这是一个利用机器学习中knn算法的小实践. 目录 Knn算法 数据 示例 分割数据 选择Neighbors knn的优缺点 机器学习是一种技术,它的目的是给机器学习能力,让它们可以根据数据自己做决定,所以对于训练…...

后端常问面经之操作系统
请简要描述线程与进程的关系,区别及优缺点? 本质区别:进程是操作系统资源分配的基本单位,而线程是任务调度和执行的基本单位 在开销方面:每个进程都有独立的代码和数据空间(程序上下文),程序之…...

RK3568平台 iperf3测试网络性能
一.iperf3简介 iperf是一款开源的网络性能测试工具,主要用于测量TCP和UDP带宽性能。它可以在不同的操作系统上运行,包括Windows、Linux、macOS等。iperf具有简单易用、功能强大、高度可配置等特点,广泛应用于网络性能测试、网络故障诊断和网…...
Spring Boot中实现对特定URL的权限验证:拦截器、切面和安全框架的比较
引言: 在开发Web应用程序时,对特定URL进行权限验证是一项常见的需求。在Spring Boot中,我们有多种选择来实现这一目标,其中包括使用拦截器、切面和专门的安全框架(如Spring Security)。本文将比较这三种方式…...
【能源数据分析-00】能源领域数据集集锦(动态更新)
一、前言 大数据科学在能源领域的深度应用,已经深刻改变了这一行业的垂直格局。它为我们提供了宝贵的见解,帮助降低下游市场的成本,使石油生产商能够更好地应对市场繁荣期的需求。近期,石油价格的剧烈下跌给全球经济带来了沉重打…...

数据挖掘与机器学习 1. 绪论
于高山之巅,方见大河奔涌;于群峰之上,便觉长风浩荡 —— 24.3.24 一、数据挖掘和机器学习的定义 1.数据挖掘的狭义定义 背景:大数据时代——知识贫乏 数据挖掘的狭义定义: 数据挖掘就是从大量的、不完全的、有噪声的、…...
Matlab实现序贯变分模态分解(SVMD)
大家好,我是带我去滑雪! 序贯变分模态分解(SVMD) 是一种信号处理和数据分析方法。它可以将复杂信号分解为一系列模态函数,每个模态函数代表信号中的特定频率分量。 SVMD 的主要目标是提取信号中的不同频率分量并将其重构为原始信号。SVMD的基…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...

C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...

IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...

LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...

Spring AOP代理对象生成原理
代理对象生成的关键类是【AnnotationAwareAspectJAutoProxyCreator】,这个类继承了【BeanPostProcessor】是一个后置处理器 在bean对象生命周期中初始化时执行【org.springframework.beans.factory.config.BeanPostProcessor#postProcessAfterInitialization】方法时…...