政安晨:【Keras机器学习实践要点】(三)—— 编写组件与训练数据
政安晨的个人主页:政安晨
欢迎 👍点赞✍评论⭐收藏
收录专栏: TensorFlow与Keras实战演绎机器学习
希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!
介绍
通过 Keras,您可以编写自定义层、模型、度量指标、损失和优化器,并在同一代码库中跨 TensorFlow、JAX 和 PyTorch 运行。
老规矩,咱们还是先准备环境(参考我本专栏目录中的文章,其中有搭建环境的部分):
政安晨:【TensorFlow与Keras实战演绎机器学习】专栏 —— 目录
https://blog.csdn.net/snowdenkeke/article/details/136985399
准备好环境后,咱们开始。
编写组件
让我们先来看看自定义层:
{keras.ops 命名空间包含}
1. NumPy API 的实现,例如 keras.ops.stack 或 keras.ops.matmul。
2. 一组 NumPy 中没有的神经网络特定操作,如 keras.ops.conv 或 keras.ops.binary_crossentropy。
让我们创建一个可与所有后端配合使用的自定义密集层:
class MyDense(keras.layers.Layer):def __init__(self, units, activation=None, name=None):super().__init__(name=name)self.units = unitsself.activation = keras.activations.get(activation)def build(self, input_shape):input_dim = input_shape[-1]self.w = self.add_weight(shape=(input_dim, self.units),initializer=keras.initializers.GlorotNormal(),name="kernel",trainable=True,)self.b = self.add_weight(shape=(self.units,),initializer=keras.initializers.Zeros(),name="bias",trainable=True,)def call(self, inputs):# Use Keras ops to create backend-agnostic layers/metrics/etc.x = keras.ops.matmul(inputs, self.w) + self.breturn self.activation(x)
接下来,让我们制作一个依赖于keras.random命名空间的自定义Dropout层:
class MyDropout(keras.layers.Layer):def __init__(self, rate, name=None):super().__init__(name=name)self.rate = rate# Use seed_generator for managing RNG state.# It is a state element and its seed variable is# tracked as part of `layer.variables`.self.seed_generator = keras.random.SeedGenerator(1337)def call(self, inputs):# Use `keras.random` for random ops.return keras.random.dropout(inputs, self.rate, seed=self.seed_generator)
接下来,让我们编写一个自定义子类模型,使用我们的两个自定义层:
class MyModel(keras.Model):def __init__(self, num_classes):super().__init__()self.conv_base = keras.Sequential([keras.layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),keras.layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),keras.layers.MaxPooling2D(pool_size=(2, 2)),keras.layers.Conv2D(128, kernel_size=(3, 3), activation="relu"),keras.layers.Conv2D(128, kernel_size=(3, 3), activation="relu"),keras.layers.GlobalAveragePooling2D(),])self.dp = MyDropout(0.5)self.dense = MyDense(num_classes, activation="softmax")def call(self, x):x = self.conv_base(x)x = self.dp(x)return self.dense(x)
让我们编译并适配它:
model = MyModel(num_classes=10)
model.compile(loss=keras.losses.SparseCategoricalCrossentropy(),optimizer=keras.optimizers.Adam(learning_rate=1e-3),metrics=[keras.metrics.SparseCategoricalAccuracy(name="acc"),],
)model.fit(x_train,y_train,batch_size=batch_size,epochs=1, # For speedvalidation_split=0.15,
)
现在咱们演绎如下:
在本地的TensorFlow虚拟环境中,首先导入keras:
from tensorflow import keras
(可以在Jupyter Notebook中运行)
如果在演绎执行中出错,可能是Keras版本问题,使用如下命令升级keras。
sudo pip install --upgrade keras
执行结果:

训练模型
在任意数据源上训练模型
所有的Keras模型都可以在各种数据来源上进行训练和评估,与您使用的后端无关。这包括:
NumPy数组 Pandas数据框 TensorFlow tf.data.Dataset对象 PyTorch DataLoader对象 Keras PyDataset对象 无论您使用TensorFlow、JAX还是PyTorch作为Keras后端,它们都可以工作。
让我们尝试使用PyTorch DataLoader:
import torch# Create a TensorDataset
train_torch_dataset = torch.utils.data.TensorDataset(torch.from_numpy(x_train), torch.from_numpy(y_train)
)
val_torch_dataset = torch.utils.data.TensorDataset(torch.from_numpy(x_test), torch.from_numpy(y_test)
)# Create a DataLoader
train_dataloader = torch.utils.data.DataLoader(train_torch_dataset, batch_size=batch_size, shuffle=True
)
val_dataloader = torch.utils.data.DataLoader(val_torch_dataset, batch_size=batch_size, shuffle=False
)model = MyModel(num_classes=10)
model.compile(loss=keras.losses.SparseCategoricalCrossentropy(),optimizer=keras.optimizers.Adam(learning_rate=1e-3),metrics=[keras.metrics.SparseCategoricalAccuracy(name="acc"),],
)
model.fit(train_dataloader, epochs=1, validation_data=val_dataloader)

现在让我们尝试使用tf.data来完成这个任务:
import tensorflow as tftrain_dataset = (tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(batch_size).prefetch(tf.data.AUTOTUNE)
)
test_dataset = (tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(batch_size).prefetch(tf.data.AUTOTUNE)
)model = MyModel(num_classes=10)
model.compile(loss=keras.losses.SparseCategoricalCrossentropy(),optimizer=keras.optimizers.Adam(learning_rate=1e-3),metrics=[keras.metrics.SparseCategoricalAccuracy(name="acc"),],
)
model.fit(train_dataset, epochs=1, validation_data=test_dataset)


相关文章:
政安晨:【Keras机器学习实践要点】(三)—— 编写组件与训练数据
政安晨的个人主页:政安晨 欢迎 👍点赞✍评论⭐收藏 收录专栏: TensorFlow与Keras实战演绎机器学习 希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正! 介绍 通过 Keras,您可以编写自定…...
数据库系统概论(超详解!!!) 第四节 关系数据库标准语言SQL(Ⅲ)
1.连接查询 连接查询:同时涉及多个表的查询 连接条件或连接谓词:用来连接两个表的条件 一般格式: [<表名1>.]<列名1> <比较运算符> [<表名2>.]<列名2> [<表名1>.]<列名1> BETWEEN [&l…...
如何使用Python进行网络安全与密码学【第149篇—密码学】
👽发现宝藏 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 用Python进行网络安全与密码学:技术实践指南 随着互联网的普及,网络…...
应急响应-Web2
应急响应-Web2 1.攻击者的IP地址(两个)? 192.168.126.135 192.168.126.129 通过phpstudy查看日志,发现192.168.126.135这个IP一直在404访问 , 并且在日志的最后几条一直在访问system.php ,从这可以推断 …...
复试专业前沿问题问答合集8-1——CNN、Transformer、TensorFlow、GPT
复试专业前沿问题问答合集8-1——CNN、Transformer、TensorFlow、GPT 深度学习中的CNN、Transformer、TensorFlow、GPT大语言模型的原理关系问答: Transformer与ChatGPT的关系 Transformer 是一种基于自注意力机制的深度学习模型,最初在论文《Attention is All You Need》…...
用Python做一个植物大战僵尸
植物大战僵尸是一个相对复杂的游戏,涉及到图形界面、动画、游戏逻辑等多个方面。用Python实现一个完整的植物大战僵尸游戏是一个大工程,但我们可以简化一些内容,做一个基础版本。 以下是一个简化版的植物大战僵尸游戏的Python实现思路&#…...
Win11文件右键菜单栏完整显示教程
近日公司电脑升级了win11,发现了一个小麻烦事,如下图: 当我想使用svn或git的时候必须要多点一下,这忍不了,无形之中加大了工作量! 于是,菜单全显示教程如下: 第一步:管…...
【Python实用标准库】argparser使用教程
argparser使用教程 1.介绍2.基本使用3.add_argument() 参数设置4.参考 1.介绍 (一)argparse 模块是 Python 内置的用于命令项选项与参数解析的模块,其用主要在两个方面: 一方面在python文件中可以将算法参数集中放到一起&#x…...
伦敦金与纸黄金有什么区别?怎么选?
伦敦金与纸黄金都是与黄金相关的投资品种,近期黄金市场的上涨吸引了投资者的关注,那投资者想开户入场成为黄金投资者应该选择纸黄金还是伦敦金呢?两者有何区别呢?下面我们就来讨论一下。 伦敦金是一种起源于伦敦的标准化黄金交易合…...
化工企业能源在线监测管理系统,智能节能助力生产
化工企业能源消耗量极大,其节能的空间也相对较大,所以需要控制能耗强度,保持更高的能源利用率。 化工企业能源消耗现状 1、能源管理方面 计量能源消耗时,计量器具存在问题,未能对能耗情况实施完全计量,有…...
C/C++ 一些使用网站收集...
C/C 标准 各种语言协议标准文档 open-std.org 网站 C语言标准文档 open-std.org C基金会网站 C/C 标准库网站 c/c 标准库 cplusplus.com 网站 c/c标准库 cppreference.com 网站 C Core Guidelines【isocpp.org】 C/C 发展 C现有状态及未来规划【isocpp.org】...
2024可以搜索夸克网盘的方法
截止2024可以搜索夸克网盘的方法 6miu盘搜 6miu盘搜是一个强大的网盘搜索工具,它汇集了多个网盘平台的资源,包括百度网盘、163网盘、金山快盘等,可以帮助用户快速找到所需的资料。6miu盘搜的一个显著特点是它的资源更新速度快,可以搜索到最新的资源。此外,6miu盘搜的界面清爽…...
2024年最新阿里云服务器价格表_CPU内存+磁盘+带宽价格
2024年阿里云服务器租用费用,云服务器ECS经济型e实例2核2G、3M固定带宽99元一年,轻量应用服务器2核2G3M带宽轻量服务器一年61元,ECS u1服务器2核4G5M固定带宽199元一年,2核4G4M带宽轻量服务器一年165元12个月,2核4G服务…...
300.【华为OD机试】跳房子I(时间字符串排序—JavaPythonC++JS实现)
本文收录于专栏:算法之翼 本专栏所有题目均包含优质解题思路,高质量解题代码(Java&Python&C++&JS分别实现),详细代码讲解,助你深入学习,深度掌握! 文章目录 一. 题目二.解题思路三.题解代码Python题解代码JAVA题解代码C/C++题解代码JS题解代码四.代码讲解(Ja…...
linux ln Linux 系统中用于创建链接(link)的命令
linux 命令基础汇总 命令&基础描述地址linux curl命令行直接发送 http 请求Linux curl 类似 postman 直接发送 get/post 请求linux ln创建链接(link)的命令创建链接(link)的命令linux linklinux 软链接介绍linux 软链接介绍l…...
mysql按照查询条件进行排序和统计一个字段中每个不同数值出现的次数
1.比如学生表 如何显示查询结果的顺序根据放置的顺序查询 <select id"selectNames" resultType"Student">select * from student_table where 11<if test"studentList! null">and name in<foreach item"item" ind…...
深度学习基础知识
本文内容来自https://zhuanlan.zhihu.com/p/106763782 此文章是用于学习上述链接,方便自己理解的笔记 1.深度学习的网络结构 深度学习是神经网络的一种特殊形式,典型的神经网络如下图所示。 神经元:表示输入、中间数值、输出数值点。例如&…...
UE4_旋转节点总结一
一、Roll、Pitch、Yaw Roll 围绕X轴旋转 飞机的翻滚角 Pitch 围绕Y轴旋转 飞机的俯仰角 Yaw 围绕Z轴旋转 飞机的航向角 二、Get Forward Vector理解 测试: 运行: 三、Get Actor Rotation理解 运行效果: 拆分旋转体测试一&a…...
Dockerfile将jar部署成docker容器
将jar包copy到linux,新建Dockerfile文件 -rw-r--r-- 1 root root 52209844 Mar 25 22:55 data-sharing-0.0.1-SNAPSHOT.jar -rwxrwxrwx 1 root root 227 Mar 25 22:57 Dockerfile [rootlocalhost mnt]# pwd /mntDockerfile内容 # 指定基础镜像 FROM java:8-a…...
Android14音频进阶:AudioFlinger向HAL输出数据过程(六十四)
简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒体系统工程师系列【原创干货持续更新中……】🚀 人生格言: 人生从来没有捷径,只…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...
Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解
文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一:HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二:Floyd 快慢指针法(…...
针对药品仓库的效期管理问题,如何利用WMS系统“破局”
案例: 某医药分销企业,主要经营各类药品的批发与零售。由于药品的特殊性,效期管理至关重要,但该企业一直面临效期问题的困扰。在未使用WMS系统之前,其药品入库、存储、出库等环节的效期管理主要依赖人工记录与检查。库…...
用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法
用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...
C/Python/Go示例 | Socket Programing与RPC
Socket Programming介绍 Computer networking这个领域围绕着两台电脑或者同一台电脑内的不同进程之间的数据传输和信息交流,会涉及到许多有意思的话题,诸如怎么确保对方能收到信息,怎么应对数据丢失、被污染或者顺序混乱,怎么提高…...
[学习笔记]使用git rebase做分支差异化同步
在一个.NET 项目中,使用了Volo.Abp库,但出于某种原因,需要源码调试,因此,使用源码方式集成的项目做了一个分支archive-abp-source 其中引用方式变更操作的提交为:7de53907 后续,在master分支中…...
