力扣-查找每个员工花费的总时间
大家好,我是空空star,本篇带大家了解一道简单的力扣sql练习题。
文章目录
- 前言
- 一、题目:1741. 查找每个员工花费的总时间
- 二、解题
- 1.正确示范①
- 提交SQL
- 运行结果
- 2.正确示范②
- 提交SQL
- 运行结果
- 3.正确示范③
- 提交SQL
- 运行结果
- 4.正确示范④
- 提交SQL
- 运行结果
- 5.其他
- 总结
前言
一、题目:1741. 查找每个员工花费的总时间
表: Employees
+-------------+------+
| Column Name | Type |
+-------------+------+
| emp_id | int |
| event_day | date |
| in_time | int |
| out_time | int |
+-------------+------+
(emp_id, event_day, in_time) 是这个表的主键。
该表显示了员工在办公室的出入情况。
event_day 是此事件发生的日期,in_time 是员工进入办公室的时间,而 out_time 是他们离开办公室的时间。
in_time 和 out_time 的取值在1到1440之间。
题目保证同一天没有两个事件在时间上是相交的,并且保证 in_time 小于 out_time。
编写一个SQL查询以计算每位员工每天在办公室花费的总时间(以分钟为单位)。 请注意,在一天之内,同一员工是可以多次进入和离开办公室的。 在办公室里一次进出所花费的时间为out_time 减去 in_time。
返回结果表单的顺序无要求。
查询结果的格式如下:
Employees table:
+--------+------------+---------+----------+
| emp_id | event_day | in_time | out_time |
+--------+------------+---------+----------+
| 1 | 2020-11-28 | 4 | 32 |
| 1 | 2020-11-28 | 55 | 200 |
| 1 | 2020-12-03 | 1 | 42 |
| 2 | 2020-11-28 | 3 | 33 |
| 2 | 2020-12-09 | 47 | 74 |
+--------+------------+---------+----------+
Result table:
+------------+--------+------------+
| day | emp_id | total_time |
+------------+--------+------------+
| 2020-11-28 | 1 | 173 |
| 2020-11-28 | 2 | 30 |
| 2020-12-03 | 1 | 41 |
| 2020-12-09 | 2 | 27 |
+------------+--------+------------+
雇员 1 有三次进出: 有两次发生在 2020-11-28 花费的时间为 (32 - 4) + (200 - 55) = 173, 有一次发生在 2020-12-03 花费的时间为 (42 - 1) = 41。
雇员 2 有两次进出: 有一次发生在 2020-11-28 花费的时间为 (33 - 3) = 30, 有一次发生在 2020-12-09 花费的时间为 (74 - 47) = 27。
二、解题
1.正确示范①
提交SQL
select event_day day,
emp_id,
sum(out_time-in_time) total_time
from Employees
group by event_day,emp_id;
运行结果
2.正确示范②
提交SQL
select event_day day,emp_id,sum(time) total_time
from(select event_day,emp_id,out_time-in_time timefrom Employees
) u group by event_day,emp_id;
运行结果
3.正确示范③
提交SQL
select event_day day,
emp_id,
sum(out_time)-sum(in_time) total_time
from Employees
group by event_day,emp_id;
运行结果
4.正确示范④
提交SQL
select distinct event_day day,
emp_id,
sum(out_time-in_time) over(partition by event_day,emp_id) total_time
from Employees;
运行结果
5.其他
总结
正确示范①思路:
先group by event_day,emp_id,
再sum(out_time-in_time) total_time;
正确示范②思路:
先out_time-in_time time,
再group by event_day,emp_id,
再sum(time) total_time;
正确示范③思路:
先group by event_day,emp_id,
再sum(out_time)-sum(in_time) total_time;
正确示范④思路:
先sum(out_time-in_time) over(partition by event_day,emp_id) total_time,
再distinct。
知识点:(
group by & partition by)
• group 单纯分组
• partition 也能分组,还具备累计的功能
相关文章:
力扣-查找每个员工花费的总时间
大家好,我是空空star,本篇带大家了解一道简单的力扣sql练习题。 文章目录前言一、题目:1741. 查找每个员工花费的总时间二、解题1.正确示范①提交SQL运行结果2.正确示范②提交SQL运行结果3.正确示范③提交SQL运行结果4.正确示范④提交SQL运行…...
企业级信息系统开发学习笔记1.8 基于Java配置方式使用Spring MVC
文章目录零、本节学习目标一、基于Java配置与注解的方式使用Spring MVC1、创建Maven项目 - SpringMVCDemo20202、在pom.xml文件里添加相关依赖3、创建日志属性文件 - log4j.properties4、创建首页文件 - index.jsp5、创建Spring MVC配置类 - SpringMvcConfig6、创建Web应用初始…...
【C语言复习】C语言中的文件操作
C语言中的文件操作写在前面文件操作什么是文件文件的分类文件名文件的操作文件指针文件的打开和关闭文件的顺序读写文件的随机读写fseekftellrewindfeof写在前面 文件操作在C语言部分只是属于了解内容,但是因为它可能会应用在项目中,所以我把它单独写成…...
00后整顿职场,当摸鱼测试员遇上了内卷00后。
在程序员职场上,什么样的人最让人反感呢? 是技术不好的人吗?并不是。技术不好的同事,我们可以帮他。 是技术太强的人吗?也不是。技术很强的同事,可遇不可求,向他学习还来不及呢。 真正让人反感的,是技术平平&…...
程序员的上帝视角(4)——视角
对于开发人员来说,工作都是从评估一个需求开始。我们第一个要解决的问题就是看待需求的视角。视角的不同,得到的设计方案可能是完全不同的。作为一个程序员,不能单单从个人视角来看待问题。而是要尝试从不同角色出发,不停思考。上…...
一、webpack基础
webpack基础 一、webpack是什么 webpack 是一个用于现代 JavaScript 应用程序的静态模块打包工具。 说白了webpack就是一个构建和管理静态资源的工具,在我们使用框架开发时,它会在我们内部的一个或者多个入口根据我们引入的各个模块将他们根据一定的规…...
超详细VMware CentOS7(最小安装)安装教程
前言:在我们使用虚拟机的时候,不要去担心我们的一些操作会使虚拟机损坏或者有没有可能会使我们的电脑本身出现一些问题,要记住无论我们把我们的虚拟机如何都不会影响我们本身的机器,因为它只是虚拟的,在虚拟机里不要担…...
经典卷积模型回顾8—NIN实现图像分类(matlab)
首先,介绍一下NiN(Network In Network)模型。NiN模型是由加州大学伯克利分校的Lin、Chen、Yan等人在2013年提出的一种深度卷积神经网络模型,其特点是在传统的卷积神经网络中加入了多个小的全连接网络,用于对特征进行非…...
【Java笔记】泛型
本章专题与脉络 泛型概述 生活中的例子 举例1:中药店,每个抽屉外面贴着标签 举例2:超市购物架上很多瓶子,每个瓶子装的是什么,有标签 举例3:家庭厨房中: Java中的泛型,就类似于上…...
【Linux】用户管理
😊😊作者简介😊😊 : 大家好,我是南瓜籽,一个在校大二学生,我将会持续分享C/C相关知识。 🎉🎉个人主页🎉🎉 : 南瓜籽的主页…...
深入理解Mysql索引底层数据结构与算法
索引是帮助MySQL高效获取数据的排好序的数据结构 深入理解Mysql索引底层数据结构与算法1.常见的数据结构讲解1.1 二叉树1.1.1 二叉树的定义1.1.2 二叉树示例1.1.3 Mysql为什么不使用二叉树进行数据存储1.2 红黑树1.2.1 红黑树的定义1.2.2 红黑树示例1.2.3 Mysql 为什么不适用红…...
【SpringBoot高级篇】SpringBoot集成jasypt 配置脱敏和数据脱敏
【SpringBoot高级篇】SpringBoot集成jasypt数据脱敏配置脱敏使用场景配置脱敏实践数据脱敏pomymlEncryptMethodEncryptFieldEncryptConstantEncryptHandlerPersonJasyptApplication配置脱敏 使用场景 数据库密码直接明文写在application.yml配置中,对安全来说&…...
JAVA知识体系(二)
分布式: 微服务之间的通信 当前我们微服务架构中,微服务之间使用的三种通讯方式:代理访问,feign请求,消息队列 其中代理访问我们使用的是netflix-zuul,只要是对外暴露请求的所有网关,主要用在…...
Verilog 学习第八节(数码管段码显示)
共阴极数码管:低电平端接的都是0,高电平端哪里设置为1 ,哪里就亮~ 共阳极数码管与之相反~ 视觉暂留: 对于三位的共阴极数码管 第0.01s:让数码管0的a段亮,其他数码管全灭 Sel0为高电平,sel1和sel…...
方案开发|快递吊钩电子秤方案
物流的发展为我们提供了生活的便利,足不出户仍可以感受天南地北的美食的特产,在现在这个时代已经是现实并发展成为常态的事情了。在物流发展的每一个环节中,吊钩电子秤也是它必不可缺的一环。人们在寄出物品前需要通过吊钩电子秤称量过重量&a…...
Spring-IOC容器初始化过程
Spring IOC容器的初始化过程:Resource定位,BeanDefinition载入,向IOC容器注册BeanDefinition。整个过程由refresh()方法触发,三个过程由不同的模块完成,使用户更加灵活的对这三个过程剪裁和扩展。 BeanDefinition 就是POJO对象在IOC容器中的抽象。通过BeanDefinition 这个…...
AspCms标签手册
网站通用标签{aspcms:sitepath} 网站终极目录(可放在二级目录,其它语言则在三级目录){aspcms:languagepath} 语言目录{aspcms:siteurl} 网站地址{aspcms:sitelogo} LOGO地址{aspcms:sitetitle} 网站标题{aspcms:additiontitle} 网站附加标题{aspcms:sitekeywords} 网站关键词{a…...
什么是Netty
一.Netty介绍 1.什么是netty Netty 是由 JBOSS 提供的一个 Java 开源框架。Netty 提供异步的、基于事件驱动的网络应用程序框架,用以快速开发高性能、高可靠性的网络 IO 程序,是目前最流行的 NIO 框架,Netty 在互联网领域、大数据分布式计算…...
SpringCloud:统一网关Gateway
目录 1、网关介绍 2、搭建网关服务 3、路由断言工厂 4、路由过滤器 5、全局过滤器GlobalFilter 6、过滤器执行顺序 7、跨域问题处理 1、网关介绍 网关(Gateway)又称网间连接器、协议转换器。网关在网络层以上实现网络互连,是复杂的网络互 连设备࿰…...
【独家】华为OD机试 - 最差产品奖(C 语言解题)
最近更新的博客 华为od 2023 | 什么是华为od,od 薪资待遇,od机试题清单华为OD机试真题大全,用 Python 解华为机试题 | 机试宝典【华为OD机试】全流程解析+经验分享,题型分享,防作弊指南)华为od机试,独家整理 已参加机试人员的实战技巧文章目录 最近更新的博客使用说明本期…...
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
字符串哈希+KMP
P10468 兔子与兔子 #include<bits/stdc.h> using namespace std; typedef unsigned long long ull; const int N 1000010; ull a[N], pw[N]; int n; ull gethash(int l, int r){return a[r] - a[l - 1] * pw[r - l 1]; } signed main(){ios::sync_with_stdio(false), …...
GraphRAG优化新思路-开源的ROGRAG框架
目前的如微软开源的GraphRAG的工作流程都较为复杂,难以孤立地评估各个组件的贡献,传统的检索方法在处理复杂推理任务时可能不够有效,特别是在需要理解实体间关系或多跳知识的情况下。先说结论,看完后感觉这个框架性能上不会比Grap…...
MeshGPT 笔记
[2311.15475] MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers https://library.scholarcy.com/try 真正意义上的AI生成三维模型MESHGPT来袭!_哔哩哔哩_bilibili GitHub - lucidrains/meshgpt-pytorch: Implementation of MeshGPT, SOTA Me…...
Python第七周作业
Python第七周作业 文章目录 Python第七周作业 1.使用open以只读模式打开文件data.txt,并逐行打印内容 2.使用pathlib模块获取当前脚本的绝对路径,并创建logs目录(若不存在) 3.递归遍历目录data,输出所有.csv文件的路径…...
