当前位置: 首页 > news >正文

二分练习题——123

123

二分+等差数列求和+前缀和数组

题目分析

连续一段的和我们想到了前缀和,但是这里的l和r的范围为1e12,明显不能用O(n)的时间复杂度去求前缀和。那么我们开始观察序列的特点,可以按照等差数列对序列进行分块。如上图,在求前10个数的和的时候,我们可以这样求1+3(1+2)+6(1+2+3)+10(1+2+3+4)=20。我们不需要遍历10次就可以求出来。求前缀和代码如下

sum = new long[1500010];
for (int i = 1; i <= 1500000; i++) {t += i;sum[i] = sum[i-1]+t;
}

这里的t最开始等于1,是第一块的数字和,然后等于3,是第二块数字的和,然后等于6是第三块数字的和,以此类推。sum[i]表示的是分块后前i块包含数字的和。

我们可以求出前n块数字的和,那么我们需要知道第l个数字是在哪一块里面,然后求第l个数字是所在块的第几个数字。因为对于最后一块来说,不是所有的数字都会被包含进来,我们要单独对最后一块求数字和。

第一阶段利用二分求第x个数所在的块

​ 图1

如图1所示,我们可以把这个序列分块,第一块有1个数,第二块有2个数,第三块有3个数,第四块有4个数,每一块拥有数的个数是一个等差数列。现在要找到序列中第x个数所在的块数,假设x=3,那么第x个数在第2块中,如果x=4,那么第x个数在第3块中。求第x个数所在的块数,就是求从左往右数,前缀和第一个大于等于x的块。

比如第2块的前缀和就是3,第三块的前缀和就是5。这个可以用二分去求。

    int l = 1;int r = 1500000;//最多可以分的块数while(l < r) {int mid = (l + r) / 2;if(sum(mid) < x) {//求mid个块中包含的数字的个数,如果小于x,就是不符合条件,我要向左找l = mid + 1;}else {//符合条件,我要看前面的块是否也是大于等于x的r = mid;}}

这里的sum函数的作用就是求前mid块中包含的数字的个数,因为是等差数列,所以直接用等差数列的求和公式就可以了,sum函数如下

private static long sum(long x) {    return (1L + x) * x / 2;
}

第二阶段求前x个数的前缀和

接下来分析二分结束之和我要怎么操作,我要求前x个数字的和。

假设x=8,那么第x个数在第4块中,我还要知道,第x个数是第4块中的第几个数字。如图,第4块有4个数,第x个数第4块的第2个数上,那么第2个数是怎么来的呢?就是x-sum(r-1)=8-6=2。其实就是我二分算出来了第x个数在第r块上,那么我只需要把前r-1块包含的数的个数减去就算出来x是在第r块上的第几个数上了。结合上图更好理解。那么前x个数的和就是前r-1块包含数的和加上第r块里面前x-sum(r-1)个数的和。

某一块里面包含的数也是等差数列,求前n个数的和依然可以直接用sum(n)去求。而数组sum[r]里面记录的是前r块包含数字值的前缀和。所以二分结束后的代码是这样子的

private static long f(long x) {int l = 1;int r = 1500000;//最多可以分的块数while(l < r) {int mid = (l + r) / 2;if(sum(mid) < x) {//求mid个块中包含的数字的个数l = mid + 1;}else {r = mid;}}//r--是表示完整的块的个数r--;//就是上文里的r-1//x表示x处在他所在块的第几个位置,需要减去前面所有块包含的数的个数//本来要求x个数字,前r个块中已经包含了sum(r)个数字,第r+1个块x -= sum(r);//前r个块中已经包含了多少个数字return sum[r]+sum(x);
}

还是对于x=8的例子,二分求出来r=4,r–后,r=3,sum[3]=10。x-=sum(3)=8-6=2。sum[3]+sum(2)=10+3=13

注意这道题里对于sum函数的多次应用,但是不是每一次应用含义都是一样的。因为每一块包含的数字个数是等差数列,而每一块内每个数字形成的也是等差数列。

题目代码

import java.util.Scanner;
public class Main {
static long[] sum;
public static void main(String[] args) {Scanner scanner = new Scanner(System.in);long t = 0;//前缀和的预处理sum = new long[1500010];for (int i = 1; i <= 1500000; i++) {t += i;sum[i] = sum[i-1]+t;}int n = scanner.nextInt();while(n-- > 0) {long l = scanner.nextLong();long r = scanner.nextLong();System.out.println(f(r)-f(l-1));//f(r)求的是序列中前r个数的和}
}
//二分  二分求的是x在哪一块中 n*(n-1)/2>l的第一个n
private static long f(long x) {int l = 1;int r = 1500000;//最多可以分的块数while(l < r) {int mid = (l + r) / 2;if(sum(mid) < x) {//求mid个块中包含的数字的个数l = mid + 1;}else {r = mid;}}//r--是表示完整的块的个数r--;//x表示x处在他所在块的第几个位置,需要减去前面所有块包含的数的个数//本来要求x个数字,前r个块中已经包含了sum(r)个数字,第r+1个块x -= sum(r);//前r个块中已经包含了多少个数字return sum[r]+sum(x);
}
//sum函数求前x块包含的数的个数,同时也可以表示某一个块中,前x个数的总和
private static long sum(long x) {// TODO Auto-generated method stub    return (1L + x) * x / 2;
}
}

相关文章:

二分练习题——123

123 二分等差数列求和前缀和数组 题目分析 连续一段的和我们想到了前缀和&#xff0c;但是这里的l和r的范围为1e12&#xff0c;明显不能用O(n)的时间复杂度去求前缀和。那么我们开始观察序列的特点&#xff0c;可以按照等差数列对序列进行分块。如上图&#xff0c;在求前10个…...

淘宝详情数据采集(商品上货,数据分析,属性详情,价格监控),海量数据值得get

淘宝详情数据采集涉及多个环节&#xff0c;包括商品上货、数据分析、属性详情以及价格监控等。在采集这些数据时&#xff0c;尤其是面对海量数据时&#xff0c;需要采取有效的方法和技术来确保数据的准确性和完整性。以下是一些关于淘宝详情数据采集的建议&#xff1a; 请求示…...

Django之Web应用架构模式

一、Web应用架构模式 在开发Web应用中,有两种模式 1.1、前后端不分离 在前后端不分离的应用模式中,前端页面看到的效果都是由后端控制,由后端渲染页面或重定向,也就是后端需要控制前端的展示。前端与后端的耦合度很高 1.2、前后端分离 在前后端分离的应用模式中,后端仅返…...

GPT提示词分享 —— 口播脚本

可用于撰写视频、直播、播客、分镜头和其他口语内容的脚本。 提示词&#x1f447; 请以人的口吻&#xff0c;采用缩略语、成语、过渡短语、感叹词、悬垂修饰语和口语化语言&#xff0c;避免重复短语和不自然的句子结构&#xff0c;撰写一篇关于 [主题] 的文章。 GPT3.5&#…...

笔记本作为其他主机显示屏(HDMI采集器)

前言&#xff1a; 我打算打笔记本作为显示屏来用&#xff0c;连上工控机&#xff0c;这不是贼方便吗 操作&#xff1a; 一、必需品 HDMI采集器一个 可以去绿联买一个&#xff0c;便宜的就行&#xff0c;我的大概就长这样 win10下载 PotPlayer 软件 下载链接&#xff1a;h…...

02.percona Toolkit工具pt-archiver命令实践

1.命令作用 Percona Toolkit有的32个命令&#xff0c;可以分为7大类 工具类别 工具命令 工具作用 备注 开发类 pt-duplicate-key-checker 列出并删除重复的索引和外键 pt-online-schema-change 在线修改表结构 pt-query-advisor 分析查询语句&#xff0c;并给出建议&#x…...

【天狼启航者】研究计划

“造车”&#xff0c;预计在4月中旬展开&#xff08;嵌入式蓝桥杯比赛结束后&#xff09;&#xff0c;这里先计划一下&#xff0c;不断更新。 基本要求&#xff1a; 使用STM32F407系列芯片&#xff0c;使用FreeRTOS系统。 驱动程序必须要有强大的可移植性、模块化、低耦合、简…...

面试题 之 webpack

1.说说你对webpack理解&#xff1f;解决什么问题&#xff1f; Webpack 是实现前端项目的模块化&#xff0c;用于现代 JavaScript 应用程序的静态模块打包工具&#xff0c;被webpack 直接引用的资源打包进 bunde.js的资源&#xff0c;当webpack 处理应用程序时,它会在内部构建一…...

【机器学习之旅】概念启程、步骤前行、分类掌握与实践落地

&#x1f388;个人主页&#xff1a;豌豆射手^ &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 &#x1f917;收录专栏&#xff1a;机器学习 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共同学习、交流进…...

外星人m18R2国行中文版原厂预装23H2原装Win11系统恢复带F12恢复重置

戴尔外星人m18R2国行中文版原厂预装23H2系统恢复安装 远程恢复安装&#xff1a;https://pan.baidu.com/s/166gtt2okmMmuPUL1Fo3Gpg?pwdm64f 提取码:m64f 1.自带原厂预装系统各驱动&#xff0c;主题&#xff0c;Logo,Office带所有Alienware主题壁纸、Alienware软件驱动 2.带…...

libVLC 视频抓图

Windows操作系统提供了多种便捷的截图方式&#xff0c;常见的有以下几种&#xff1a; 全屏截图&#xff1a;通过按下PrtSc键&#xff08;Print Screen&#xff09;&#xff0c;可以截取整个屏幕的内容。截取的图像会保存在剪贴板中&#xff0c;可以通过CtrlV粘贴到图片编辑工具…...

Docker搭建LNMP环境实战(06):Docker及Docker-compose常用命令

Docker搭建LNMP环境实战&#xff08;06&#xff09;&#xff1a;Docker及Docker-compose常用命令 此处列举了docker及docker-compose的常用命令&#xff0c;一方面可以做个了解&#xff0c;另一方面可以在需要的时候进行查阅。不一定要强行记忆&#xff0c;用多了就熟悉了。 1、…...

ClickHouse10-ClickHouse中Kafka表引擎

Kafka表引擎也是一种常见的表引擎&#xff0c;在很多大数据量的场景下&#xff0c;会从源通过Kafka将数据输送到ClickHouse&#xff0c;Kafka作为输送的方式&#xff0c;ClickHouse作为存储引擎与查询引擎&#xff0c;大数据量的数据可以得到快速的、高压缩的存储。 Kafka大家…...

Encoding类

Encoding System.Text.Encoding 是 C# 中用于处理字符编码和字符串与字节之间转换的类。它提供了各种静态方法和属性&#xff0c;**用于在不同字符编码之间进行转换&#xff0c;**以及将字符串转换为字节数组或反之。 在处理多语言文本、文件、网络通信以及其他字符数据的场景…...

标定系列——预备知识-OpenCV中实现Rodrigues变换的函数(二)

标定系列——预备知识-OpenCV中实现Rodrigues变换的函数&#xff08;二&#xff09; 说明记录 说明 简单介绍罗德里格斯变换以及OpenCV中的实现函数 记录...

2014年认证杯SPSSPRO杯数学建模C题(第一阶段)土地储备方案的风险评估全过程文档及程序

2014年认证杯SPSSPRO杯数学建模 C题 土地储备方案的风险评估 原题再现&#xff1a; 土地储备&#xff0c;是指市、县人民政府国土资源管理部门为实现调控土地市场、促进土地资源合理利用目标&#xff0c;依法取得土地&#xff0c;进行前期开发、储存以备供应土地的行为。土地…...

我的编程之路:从非计算机专业到Java开发工程师的成长之路 | 学习路线 | Java | 零基础 | 学习资源 | 自学

小伙伴们好&#xff0c;我是「 行走的程序喵」&#xff0c;感谢您阅读本文&#xff0c;欢迎三连~ &#x1f63b; 【Java基础】专栏&#xff0c;Java基础知识全面详解&#xff1a;&#x1f449;点击直达 &#x1f431; 【Mybatis框架】专栏&#xff0c;入门到基于XML的配置、以…...

Django Cookie和Session

Django Cookie和Session 【一】介绍 【1】起因 HTTP协议四大特性 基于请求响应模式&#xff1a;客户端发送请求&#xff0c;服务端返回响应基于TCP/IP之上&#xff1a;作用于应用层之上的协议无状态&#xff1a;HTTP协议本身不保存客户端信息短链接&#xff1a;1.0默认使用短…...

【算法刷题 | 二叉树 04】3.27(翻转二叉树、对称二叉树、完全二叉树的节点个数、平衡二叉树、完全二叉树的所有路径)

文章目录 6.翻转二叉树6.1问题6.2解法一&#xff1a;递归6.2.1递归思路&#xff08;1&#xff09;确定递归函数的参数和返回值&#xff08;2&#xff09;确定终止条件&#xff08;3&#xff09;确定单层递归的逻辑 6.2.2全部代码 6.3解法二&#xff1a;层序遍历 7.对称二叉树7.…...

【uniapp】uniapp实现免密登录

文章目录 一、概要二、整体架构流程三、技术名词解释四 、技术细节1.存取token有效期&#xff1f;2.使用setStorageSync而不使用setStorage&#xff1f;3.使用onLaunch而不使用全局路由&#xff1f; 一、概要 打开一个网页或小程序的时候&#xff0c;我们有时候会自动进入主页…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

多种风格导航菜单 HTML 实现(附源码)

下面我将为您展示 6 种不同风格的导航菜单实现&#xff0c;每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

iview框架主题色的应用

1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题&#xff0c;无需引入&#xff0c;直接可…...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品&#xff0c;通过将智能手机转变为具有情感交互能力的桌面机器人&#xff0c;展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家&#xff0c;我将全面解析LOOI的技术实现架构&#xff0c;特别是其手势识别、物体识别和环境…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...