当前位置: 首页 > news >正文

VMware虚拟机更换引导顺序

前言

我用wmware装了黑群晖测试,将img转成vmdisk的格式之后发现系统引导盘之后1G,有点太小了

我准备把wmware的黑群晖系统迁移到新添加的虚拟磁盘里

1.登录黑群晖的SSH

请先在黑群晖的控制面板中的终端机和SNMP里面启用SSH功能,才能使用ssh链接

2.使用dd命令克隆系统

superchen@nas:~$ sudo dd if=/dev/synoboot of=/dev/sdg bs=1M status=progress
998244352 bytes (998 MB, 952 MiB) copied, 8 s, 125 MB/s
1024+0 records in
1024+0 records out
1073741824 bytes (1.1 GB, 1.0 GiB) copied, 8.83912 s, 121 MB/s

3.修改vmware虚拟机启动引导

打开电源时进入固件

进入固件blos之后,键盘 -> 移动到Boot选项

选择Hard Drive然后回车

将我们要引导的盘设置成第一(使用键盘的+ 或者 - 键调整顺序)

将这个2:4:0:6 看最后的数字代表了第6个盘

具体可以看虚拟机的硬盘设置

这个20G的虚拟磁盘就是我们刚才将系统克隆到的盘,显示硬盘6

然后F10保存设置,跳出来一个弹框选择yes,就会重启进入引导系统

相关文章:

VMware虚拟机更换引导顺序

前言 我用wmware装了黑群晖测试,将img转成vmdisk的格式之后发现系统引导盘之后1G,有点太小了 我准备把wmware的黑群晖系统迁移到新添加的虚拟磁盘里 1.登录黑群晖的SSH 请先在黑群晖的控制面板中的终端机和SNMP里面启用SSH功能,才能使用ss…...

RAFT:让大型语言模型更擅长特定领域的 RAG 任务

RAFT(检索增强的微调)代表了一种全新的训练大语言模型(LLMs)以提升其在检索增强生成(RAG)任务上表现的方法。“检索增强的微调”技术融合了检索增强生成和微调的优点,目标是更好地适应各个特定领…...

Stable Diffusion 本地训练端口与云端训练端口冲突解决办法

方法之一,修改本地训练所用的端口 1 首先,进入脚本训练器的根目录 例如:C:\MarkDeng\lora-scripts-v1.7.3 找到gui.py 2 修改端口号 因为云端训练器也是占用28000和6006端口 那么本地改成27999和6007也是可以的 保存退出,运行启动…...

C++学习day1

思维导图 定义自己的命名空间&#xff0c;其中有string类型的变量&#xff0c;再定义两个函数&#xff0c;一个函数完成字符串的输入&#xff0c;一个函数完成求字符串长度&#xff0c;再定义一个全局函数完成对该字符串的反转 #include <iostream> using namespace std;…...

openGauss CM

CM 可获得性 本特性自openGauss 3.0.0版本开始引入。 特性简介 CM&#xff08;Cluster Manager&#xff09;是一款数据库管理软件&#xff0c;由cm_server和cm_agent组成。 cm_agent是部署在数据库每个主机上&#xff0c;用来启停和监控各个数据库实例进程的数据库管理组件…...

北斗短报文+4G应急广播系统:实时监控 自动预警 保护校园安全的新力量

安全无小事&#xff0c;生命重如山。学生是祖国的未来&#xff0c;校园安全是全社会安全工作的一个重要的组成部分。它直接关系到青少年学生能否安健康地成长&#xff0c;关系到千千万万个家庭的幸福安宁和社会稳定。 灾害事故和突发事件频频发生&#xff0c;给学生、教职员工…...

2024河北石家庄矿业矿山展览会|河北智慧矿山展会|河北矿博会

2024中国&#xff08;石家庄&#xff09;国际矿业博览会      时间&#xff1a;2024年7月4-6日 地点&#xff1a;石家庄国际会展中心.正定      随着全球经济的持续增长和矿产资源需求的不断攀升&#xff0c;矿业行业正迎来前所未有的发展机遇。作为矿业领域的盛会&…...

ruoyi使用笔记

1.限流处理 RateLimiter PostMapping("/createOrder") ApiOperation("创建充值订单") RateLimiter(key CacheConstants.REPEAT_SUBMIT_KEY,time 10,count 1,limitType LimitType.IP) public R createOrder(RequestBody Form form) {//业务处理return …...

论文《Exploring to Prompt for Vision-Language Models》阅读

论文《Exploring to Prompt for Vision-Language Models》阅读 论文概况论文动机&#xff08;Intro&#xff09;MethodologyPreliminaryCoOp[CLASS]位置Context 是否跨 class 共享表示和训练 ExperimentsOverall ComparisonDomain GeneralizationContext Length (M) 和 backbon…...

科普 | Runes 预挖矿概念

作者&#xff1a;Jacky X/推&#xff1a;zxl2102492 关于 Runes 协议的前世今生&#xff0c;可以点击阅读这篇文章 &#x1f447; 《简述 Runes 协议、发展历程及最新的「公开铭刻」发行机制的拓展讨论》 什么是传统预挖矿概念 这轮比特币生态爆发之前&#xff0c;预挖矿&…...

蓝桥杯真题Day40 倒计时19天 纯练题!

蓝桥杯第十三届省赛真题-统计子矩阵 题目描述 给定一个 N M 的矩阵 A&#xff0c;请你统计有多少个子矩阵 (最小 1 1&#xff0c;最大 N M) 满足子矩阵中所有数的和不超过给定的整数 K? 输入格式 第一行包含三个整数 N, M 和 K. 之后 N 行每行包含 M 个整数&#xf…...

Android 14.0 SystemUI下拉状态栏增加响铃功能

1.概述 在14.0的系统产品rom定制化开发中,在对systemui的状态栏开发中,对SystemUI下拉状态栏的QuickQSPanel区域有快捷功能键开关,对于增加各种响铃快捷也是常用功能, 有需要增加响铃功能开关功能,接下来就来分析SystemUI下拉状态栏QuickQSPanel快捷功能键开关的相关源码…...

docker学习笔记 二-----docker介绍

老套路哈&#xff0c;第一章先科普一下三种常见的云服务类型&#xff0c;第二和第三章节写docker学习笔记。 一 、IAAS、PAAS、SAAS IAAS (Infrastructure as a Service)&#xff1a;基础即服务&#xff0c;供应商仅提供给用户最基础设施的服务资源&#xff0c;也就是服务器资…...

螺旋矩阵的算法刷题

螺旋矩阵的算法刷题 本文主要涉及螺旋矩阵的算法 包括三个题目分别是 59. 螺旋矩阵 II54. 螺旋矩阵 中等LCR 146. 螺旋遍历二维数组 文章目录 螺旋矩阵的算法刷题一 、螺旋矩阵简单1.1 实现一&#xff08;我认为这个方法更巧妙&#xff01;&#xff01;&#xff09;1.2 实现二&…...

蓝桥杯算法赛(二进制王国)

问题描述 二进制王国是一个非常特殊的国家&#xff0c;因为该国家的居民仅由 0 和 1 组成。 在这个国家中&#xff0c;每个家庭都可以用一个由 0 和 1 组成的字符串 S 来表示&#xff0c;例如 101、 000、 111 等。 现在&#xff0c;国王选了出 N 户家庭参加邻国的庆典…...

7.JDK下载和安装

文章目录 一、下载二、安装三、JDK的安装目录介绍 写JAVA代码不是随随便便能写的&#xff0c;我们得先做一点准备工作。例如&#xff0c;我们平时想要玩一把游戏&#xff0c;就需要先下载、安装才能玩游戏。JAVA也是一样的&#xff0c;也是需要下载并安装相关的软件&#xff0c…...

Java序列化之Jackson详解

文章目录 1 Jackson1.1 Jackson简介1.2 为什么选择Jackson1.3 Jackson的基本功能1.3.1 将Java对象转换为JSON字符串&#xff08;序列化&#xff09;1.3.2 将JSON字符串转换为Java对象&#xff08;反序列化&#xff09; 1.4 Jackson库主要方法1.5 使用Jackson基本步骤1.5.1 添加…...

深入Facebook的世界:探索数字化社交的无限可能性

引言 随着数字化时代的到来&#xff0c;社交媒体平台已经成为了人们日常生活中不可或缺的一部分&#xff0c;而其中最为突出的代表之一便是Facebook。作为全球最大的社交媒体平台之一&#xff0c;Facebook不仅仅是一个社交网络&#xff0c;更是一个数字化社交的生态系统&#…...

HTML 怎么解决上下标问题呢?

当我们阅读内容时&#xff0c;经常会遇到特殊格式的文本&#xff0c;如化学式的下标和数学公式的上标&#xff0c;sub 标签和sup 标签就是用来解决这个问题的。 1. 基础语法 什么是 sub 和sup标签 sub 标签用于定义下标文本&#xff0c;而 sup 标签用于定义上标文本。 这些…...

题目 2880: 计算鞍点

题目描述: 给定一个5*5的矩阵&#xff0c;每行只有一个最大值&#xff0c;每列只有一个最小值&#xff0c;寻找这个矩阵的鞍点。 鞍点指的是矩阵中的一个元素&#xff0c;它是所在行的最大值&#xff0c;并且是所在列的最小值。 例如&#xff1a;在下面的例子中&#xff08;第…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释

以Module Federation 插件详为例&#xff0c;Webpack.config.js它可能的配置和含义如下&#xff1a; 前言 Module Federation 的Webpack.config.js核心配置包括&#xff1a; name filename&#xff08;定义应用标识&#xff09; remotes&#xff08;引用远程模块&#xff0…...

API网关Kong的鉴权与限流:高并发场景下的核心实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中&#xff0c;API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关&#xff0c;Kong凭借其插件化架构…...

基于开源AI智能名片链动2 + 1模式S2B2C商城小程序的沉浸式体验营销研究

摘要&#xff1a;在消费市场竞争日益激烈的当下&#xff0c;传统体验营销方式存在诸多局限。本文聚焦开源AI智能名片链动2 1模式S2B2C商城小程序&#xff0c;探讨其在沉浸式体验营销中的应用。通过对比传统品鉴、工厂参观等初级体验方式&#xff0c;分析沉浸式体验的优势与价值…...

可视化预警系统:如何实现生产风险的实时监控?

在生产环境中&#xff0c;风险无处不在&#xff0c;而传统的监控方式往往只能事后补救&#xff0c;难以做到提前预警。但如今&#xff0c;可视化预警系统正在改变这一切&#xff01;它能够实时收集和分析生产数据&#xff0c;通过直观的图表和警报&#xff0c;让管理者第一时间…...

生成对抗网络(GAN)损失函数解读

GAN损失函数的形式&#xff1a; 以下是对每个部分的解读&#xff1a; 1. ⁡, ​ &#xff1a;这个部分表示生成器&#xff08;Generator&#xff09;G的目标是最小化损失函数。 &#xff1a;判别器&#xff08;Discriminator&#xff09;D的目标是最大化损失函数。 GAN的训…...