Python图像处理——计算机视觉中常用的图像预处理
概述
在计算机视觉项目中,使用样本时经常会遇到图像样本不统一的问题,比如图像质量,并非所有的图像都具有相同的质量水平。在开始训练模型或运行算法之前,通常需要对图像进行预处理,以确保获得最佳的结果。图像预处理包括调整大小和裁剪到降噪和归一化的各种技术。涉及的库有OpenCV、Pillow和scikit-image等。
图像预处理
图像预处理是将原始图像数据操作成可用和有意义格式的过程。它允许消除不希望的失真并增强计算机视觉应用所需的特定品质。预处理是准备图像数据输入到机器学习模型之前的重要步骤。
常用的图像预处理:
-
调整大小: 将图像调整到统一的大小对机器学习算法的正常运行至关重要。可以使用OpenCV的resize()方法来调整图像大小。
-
灰度化: 将彩色图像转换为灰度可以简化图像数据,并减少一些算法的计算需求。cvtColor()方法可以用来将RGB转换为灰度。
-
降噪: 可以应用平滑、模糊和过滤技术来去除图像中不希望的噪声。常用的降噪方法包括GaussianBlur()和medianBlur()方法。
-
归一化: 将像素的强度值调整到期望的范围通常在0到1之间,这可以提高机器学习模型的性能。scikit-image的Normalize()可以用来进行此操作。
-
二值化: 通过阈值处理将灰度图像转换为黑白。OpenCV中的threshold()方法用于二值化图像。
-
对比度增强: 可以使用直方图均衡化调整图像的对比度。equalizeHist()方法增强了图像的对比度。
图像加载与转换
处理图像之前,首先是加载图像,然后是把图像转换到需要用的到数据空间,以便它们可以被库处理。这里常用到OpenCV和Pillow。
加载
使用OpenCV加载图像:
import cv2
image = cv2.imread('path/to/image.jpg')
这将把图像加载为NumPy数组。OpenCV加载的图像在BGR颜色空间中,如果需要,可能需要将其转换为RGB。
使用Pillow加载图像:
from PIL import Image
image = Image.open('path/to/image.jpg')
这将加载图像并将其存储为PIL图像对象。Pillow支持的图像格式更加丰富,包括PSD、ICO和WEBP等。
在颜色空间之间转换:
如果需要在不同的颜色空间之间转换图像,可以使用OpenCV或Pillow提供的函数能直接转换。例如,将BGR转换为灰度图像:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
或者将RGB转换为HSV:
image = image.convert('HSV')
图像尺寸
调整和裁剪图像尺寸是图像预处理的非常重要第一步。由于图像具有不同的形状和大小,但许多机器学习算法通常需要标准大小的输入。因此,经常需要将图像调整和裁剪到特定的尺寸,如256x256或512X512像素。在Python中,OpenCV或Pillow库提供了图像的调整大小和裁剪方法。
使用OpenCV时,可以使用resize()
函数来调整图像的大小。例如:
import cv2
img = cv2.imread('original.jpg')
resized = cv2.resize(img, (512, 512))
这将把图像调整为512x512像素。
要裁剪图像为正方形,可以计算裁剪的中心位置,并使用OpenCV的crop()
函数。
例如:
height, width = img.shape[:2]
size = min(height, width)
x = (width - size) // 2
y = (height - size) // 2
cropped = img[y:y+size, x:x+size]
使用Pillow时,可以使用Image.open()
和resize()
函数。
例如:
from PIL import Image
img = Image.open('original.jpg')
resized = img.resize((224, 224))
要裁剪图像,可以使用img.crop()
函数。
例如:
width, height = img.size
size = min(width, height)
left = (width - size) // 2
top = (height - size) // 2
right = (width + size) // 2
bottom = (height + size) // 2
cropped = img.crop((left, top, right, bottom))
将图像调整大小和裁剪到标准尺寸是非常重要的,这样可以确保机器学习模型能够高效地处理图像,并提高结果的准确性。因此,花时间来精心调整和裁剪图像将会得到更好的模型性能。
图像归一化
在处理图像数据时,将像素值归一化以保持一致的亮度并提高对比度是很重要的。这使得图像更适合分析,并允许机器学习模型独立于光照条件学习模式。
重新缩放像素值:
最常见的归一化技术是将像素值重新缩放到0到1的范围内。这是通过将所有像素除以最大像素值(通常对于RGB图像为255)来完成的。例如:
import cv2
Img = cv2.imread('image.jpg')
normalized = Img / 255.0
这将把所有像素缩放到0和1之间,0为黑色,1为白色。
直方图均衡化:
另一个有用的技术是直方图均衡化。这通过在整个范围内展开像素强度来改善对比度。可以使用OpenCV进行应用:
eq_img = cv2.equalizeHist(img)
这对于对比度低且像素值集中在狭窄范围内的图像效果很好。
对于某些算法,将像素值归一化到零均值和单位方差是有用的。这可以通过减去均值并缩放到单位方差来完成:
mean, std = cv2.meanStdDev(img)
std_img = (img - mean) / std
这将使图像围绕零居中,标准差为1。
还有一些更复杂的归一化技术,但这三个方法——重新缩放到0-1范围、直方图均衡化和标准化——涵盖了基础知识,并将为的图像数据准备好大多数机器学习应用。确保对你的训练和测试数据应用相同的归一化,以获得最佳结果。
图像滤波
图像滤波的作用是平滑图像、去除噪声、增强图像等。滤波操作可以通过应用各种类型的滤波器来实现,其中包括线性滤波器(如均值滤波、高斯滤波)和非线性滤波器(如中值滤波)等。
高斯模糊:
高斯模糊过滤器减少图像中的细节和噪声。它通过对每个像素及其周围像素应用高斯函数来“模糊”图像。这可以帮助平滑边缘和细节,为边缘检测或其他处理技术做准备。
中值模糊:
中值模糊过滤器适用于从图像中去除盐和胡椒噪声。它的工作原理是用邻近像素的中值替换每个像素。这可以帮助平滑孤立的噪声像素,同时保留边缘。
拉普拉斯滤波器:
拉普拉斯滤波器用于检测图像中的边缘。它通过检测强度变化迅速的区域来工作。输出将是一个突出显示边缘的图像,然后可以用于边缘检测。这有助于识别和提取图像中的特征。
锐化掩蔽:
锐化掩蔽是一种用于锐化细节和增强图像边缘的技术。它的工作原理是从原始图像中减去模糊版本的图像。这放大了边缘和细节,使图像看起来更清晰。锐化掩蔽可以在特征提取或对象检测之前用于锐化细节。
双边滤波器:
双边滤波器在保留边缘的同时平滑图像。它通过考虑像素的空间接近度和颜色相似性来实现这一点。空间上靠近且颜色相似的像素将一起平滑。空间上远离或颜色差异很大的像素不会被平滑。这导致了一个具有锋利边缘的平滑图像。双边滤波器在边缘检测之前的噪声减少中可能有用。
使用分割技术检测和移除背景
检测和移除图像的背景是许多计算机视觉任务中的重要预处理步骤。分割可以将前景主题与背景分离,得到只包含主题的清晰图像。
在Python中,使用OpenCV和scikit-image进行图像分割有几种常见方法:
- 阈值化(Thresholding):阈值化是将图像转换为二值图像的方法。通过选择一个阈值,像素值高于阈值的被标记为前景,低于阈值的被标记为背景。你可以使用OpenCV的
cv2.threshold()
函数应用阈值化。
import cv2# 读取图像
img = cv2.imread('image.jpg', 0) # 以灰度模式读取图像# 应用阈值化
ret, thresh = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)# 显示结果
cv2.imshow('Thresholded Image', thresh)
cv2.waitKey(0)
cv2.destroyAllWindows()
- 边缘检测(Edge Detection):边缘检测可以找到图像中的边缘,即对象之间的边界。Canny边缘检测是一种流行的算法,你可以使用OpenCV的
cv2.Canny()
函数来实现。
import cv2# 读取图像
img = cv2.imread('image.jpg', 0) # 以灰度模式读取图像# Canny边缘检测
edges = cv2.Canny(img, 100, 200)# 显示结果
cv2.imshow('Canny Edge Detection', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()
- 区域生长(Region Growing):区域生长是一种从种子点开始,逐步将相邻像素添加到区域中的方法。你可以使用scikit-image的
skimage.segmentation.region_growing()
函数来实现。
from skimage.segmentation import region_growing
import matplotlib.pyplot as plt# 读取图像
img = plt.imread('image.jpg')# 区域生长
seed = (100, 100)
region = region_growing(img, seed)# 显示结果
plt.imshow(region, cmap='gray')
plt.axis('off')
plt.show()
- 分水岭算法(Watershed Algorithm):分水岭算法将图像视为地形图,通过模拟水流的流动来分割图像。你可以使用scikit-image的
skimage.segmentation.watershed()
函数来实现。
from skimage.segmentation import watershed
from skimage.feature import peak_local_max
from scipy import ndimage
import numpy as np
import matplotlib.pyplot as plt# 读取图像
img = plt.imread('image.jpg')# 计算距离变换
distance = ndimage.distance_transform_edt(img)# 寻找峰值
local_maxi = peak_local_max(distance, indices=False, footprint=np.ones((3, 3)), labels=img)# 应用分水岭算法
markers = ndimage.label(local_maxi)[0]
labels = watershed(-distance, markers, mask=img)# 显示结果
plt.imshow(labels, cmap='nipy_spectral')
plt.axis('off')
plt.show()
通过分割,可以从图像中隔离出主题。分割是一个关键的第一步,它允许将计算机视觉模型集中在图像最重要的部分——前景主题上。
数据集增强
数据增强是一种通过生成新的图像来人为扩展数据集大小的技术,有助于减少过拟合并提高模型的泛化能力。常见的图像数据增强包括:
-
翻转和旋转:对图像进行水平或垂直翻转,以及90度、180度、270度的旋转,可以生成新的数据点。这样做可以使模型更好地适应不同的视角和方向。
-
裁剪:将图像裁剪到不同的大小和比例,可以创建具有不同视野的新图像。随机裁剪和特定比例的裁剪都是常见的方法。
-
颜色调整:调整图像的亮度、对比度、色调和饱和度可以创建具有不同外观的图像。但要小心,不要使图像过度扭曲,以免模型混淆。
-
图像叠加:在图像上叠加透明图像、纹理或噪声可以创建原始数据的变化。例如,添加水印、标志、污垢或高斯噪声等。
-
结合技术:结合多种增强技术可以进一步扩展数据集。例如,结合翻转、旋转、裁剪和颜色调整,可以生成更多样化的图像。
通过数据增强,可以扩展数据集的大小,而无需收集更多的原始图像。这有助于减少过拟合并提高模型的性能,同时也有助于节省训练时间和成本。但要注意不要过度增强,以免导致图像失真或模型混淆。
预处理步骤
对于图像项目项目,选择正确的预处理技术取决于数据的特点和项目的目标。常见的预处理步骤:
-
调整大小:将图像调整到统一的大小对机器学习算法至关重要。通常,图像会被调整为相同的高度和宽度,例如28x28或64x64像素。你可以使用OpenCV或Pillow库中的
resize()
方法来实现。 -
颜色转换:将图像转换为灰度或黑白可以简化分析并减少噪声。使用OpenCV中的
cvtColor()
方法将图像从RGB转换为灰度。对于黑白图像,可以使用阈值化来实现。 -
降噪:使用高斯模糊、中值模糊和双边过滤等技术可以减少噪声并平滑图像。OpenCV中的
GaussianBlur()
、medianBlur()
和bilateralFilter()
方法可以实现这些过滤器。 -
归一化:将像素值归一化到标准范围,例如0到1或-1到1,有助于算法更好地工作。你可以使用scikit-image中的
normalize()
方法来实现。 -
对比度增强:对于对比度较低的图像,可以使用直方图均衡化来提高对比度。OpenCV中的
equalizeHist()
方法可以执行此任务。 -
边缘检测:在图像中找到边缘或轮廓对于许多计算机视觉任务很有用。OpenCV中的
Canny()
方法中的Canny边缘检测器是一个常用的选择。
关键是根据项目的需求选择适当的预处理技术。从基本的调整大小开始,然后尝试不同的方法来改进图像质量,最终找到最适合你项目的预处理流程。通过实验,你将找到一个理想的预处理工作流程。
图像预处理常见问题
Python支持图像格式:
Python通过OpenCV和Pillow等库支持的一些主要格式包括:
- JPEG:常见的有损图像格式
- PNG:适用于具有透明度的图像的无损图像格式
- TIFF:适用于高颜色深度图像的无损图像格式
- BMP:未压缩的光栅图像格式
如何时调整图像大小:
当以下情况时,应该调整图像大小:
- 图像太大,无法高效处理。减小大小可以加快处理速度。
- 图像需要匹配机器学习模型的输入大小。
- 图像需要在特定大小的屏幕或网页上显示。
常用的图像滤波:
一些流行的降噪技术包括:
- 高斯模糊:使用高斯滤波器模糊图像并减少高频噪声。
- 中值模糊:用邻近像素的中值替换每个像素。有效去除盐和胡椒噪声。
- 双边滤波器:在保留边缘的同时模糊图像。它可以在保留锐利边缘的同时去除噪声。
OpenCV支持哪些颜色空间:
OpenCV支持RGB、HSV、LAB和灰度颜色空间。你可以使用cvtColor
函数在颜色空间之间转换。例如:
# 将RGB转换为灰度
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)# 将RGB转换为HSV
hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)# 将RGB转换为LAB
lab = cv2.cvtColor(img, cv2.COLOR_RGB2LAB)
转换到不同的颜色空间对于某些计算机视觉任务(如阈值化、边缘检测和对象跟踪)很有用。
相关文章:

Python图像处理——计算机视觉中常用的图像预处理
概述 在计算机视觉项目中,使用样本时经常会遇到图像样本不统一的问题,比如图像质量,并非所有的图像都具有相同的质量水平。在开始训练模型或运行算法之前,通常需要对图像进行预处理,以确保获得最佳的结果。图像预处理…...

编译安装飞桨fastdeploy@FreeBSD(失败)
FastDeploy是一款全场景、易用灵活、极致高效的AI推理部署工具, 支持云边端部署。提供超过 🔥160 Text,Vision, Speech和跨模态模型📦开箱即用的部署体验,并实现🔚端到端的推理性能优化。包括 物…...
java组合总和(力扣Leetcode39)
组合总和 力扣原题链接 问题描述 给定一个无重复元素的整数数组 candidates 和一个目标整数 target,找出 candidates 中可以使数字和为目标数 target 的所有不同组合,并以列表形式返回。你可以按任意顺序返回这些组合。 示例 示例 1: 输…...

ZK友好代数哈希函数安全倡议
1. 引言 前序博客: ZKP中的哈希函数如何选择ZK-friendly 哈希函数?snark/stark-friendly hash函数Anemoi Permutation和Jive Compression模式:高效的ZK友好的哈希函数Tip5:针对Recursive STARK的哈希函数 随着Incrementally Ve…...

VMware vSAN OSA存储策略 - 基于虚拟机的分布式对象存储
简介 博客:https://songxwn.com/ 存储策略 (Storage Policy) 是管理员定义的一组规则,这组规则定义了数据对象在 vSAN 存储上是如何保存的,存储策略定义了数据存储的可靠性、访问性能等特性。vSAN 提供了基于存储策略的存储管理 SPBM (Stor…...

JUC内容概述
复习概念 Sleep和Wait的区别 Sleep是Thread的静态方法,wait是Object的方法,任何对象实例都可以使用sleep不会释放锁,他也不需要占用锁,暂停。wait会释放锁,但是调用他的前提是线程占有锁他们都可以被Interrupted方法…...
postcss安装和使用
要安装和使用 PostCSS,你可以按照以下步骤操作: 步骤一:安装 PostCSS 在项目目录下,通过 npm 初始化一个新的 package.json 文件(如果还没有): npm init -y 安装 PostCSS 和必要的插件&#x…...

macOS 13 Ventura (苹果最新系统) v13.6.6正式版
macOS 13 Ventura是苹果电脑的全新操作系统,它为用户带来了众多引人注目的新功能和改进。该系统加强了FaceTime和视频通话的体验,同时优化了邮件、Safari浏览器和日历等内置应用程序,使其更加流畅、快速和安全。特别值得一提的是,…...

WordPress Git主题 响应式CMS主题模板
分享的是新版本,旧版本少了很多功能,尤其在新版支持自动更新后,该主题可以用来搭建个人博客,素材下载网站,图片站等 主题特点 兼容 IE9、谷歌 Chrome 、火狐 Firefox 等主流浏览器 扁平化的设计加响应式布局&#x…...

安卓国内ip代理app,畅游网络
随着移动互联网的普及和快速发展,安卓手机已经成为我们日常生活和工作中不可或缺的一部分。然而,由于地理位置、网络限制或其他因素,我们有时需要改变或隐藏自己的IP地址。这时,安卓国内IP代理App便成为了一个重要的工具。虎观代理…...

Day53:WEB攻防-XSS跨站SVGPDFFlashMXSSUXSS配合上传文件添加脚本
目录 MXSS UXSS:Universal Cross-Site Scripting HTML&SVG&PDF&SWF-XSS&上传&反编译(有几率碰到) SVG-XSS PDF-XSS Python生成XSS Flash-XSS 知识点: 1、XSS跨站-MXSS&UXSS 2、XSS跨站-SVG制作&配合上传 3、XSS跨站-…...

k8s安装traefik作为ingress
一、先来介绍下Ingress Ingress 这个东西是 1.2 后才出现的,通过 Ingress 用户可以实现使用 nginx 等开源的反向代理负载均衡器实现对外暴露服务,以下详细说一下 Ingress,毕竟 traefik 用的就是 Ingress 使用 Ingress 时一般会有三个组件: …...

如何在Windows 10中打开屏幕键盘?这里有详细步骤
本文解释了在Windows 10中打开或关闭屏幕键盘的不同方法,还解释了如何将屏幕键盘固定到开始菜单。 使用屏幕键盘的快捷键 如果你喜欢快捷方式,你会喜欢这个:按物理键盘上的WinCTRLO。这将立即显示屏幕键盘,而无需通过轻松使用。…...

【Pt】马灯贴图绘制过程 03-制作油渍、积尘效果
目录 效果 一、制作油渍效果 1.1 基本油渍 1.2 流淌的油渍痕迹 二、制作浮尘效果 三、制作积尘效果 效果 一、制作油渍效果 1.1 基本油渍 将上篇制作的“锈迹_深色”和“锈迹_浅色”两个文件夹再次合并为一个文件夹 这里就命名为“锈迹” 添加一个填充图层 设置Base …...
python-numpy-常用函数详解
文章目录 一、函数详解np.empty(num_points)np.zeros(shape, dtypefloat, orderC)np.tile(A, reps)np.newaxisnumpy.stack(arrays, axis0)np.roll(a, shift, axisNone) 二、实例矩阵进行扩展三行,使得每一行都与第一行相同二维数组每行减去不同的数 一、函数详解 n…...

UE小:基于UE5的两种Billboard material(始终朝向相机材质)
本文档展示了两种不同的效果,分别是物体完全朝向相机和物体仅Z轴朝向相机。通过下面的演示和相关代码,您可以更加直观地理解这两种效果的差异和应用场景。 1. 完全朝向相机效果 此效果下,物体将完全面向相机,不论相机在哪个角度…...
spring boot actuator 安全配置 springboot的安全性
关于springboot Actuator框架的安全配置方案: 加入security安全验证框架 方案一: 配置信息: spring:security:user:password: adminname: adminmanagement:endpoints:web:base-path: /monitorexposure:include: "*"# 排除端点e…...

macOS Sonoma如何查看隐藏文件
在使用Git进行项目版本控制时,我们可能会遇到一些隐藏文件,比如.gitkeep文件。它通常出现在Git项目的子目录中,主要作用是确保空目录也可以被跟踪。 终端命令 在尝试查看.gitkeep文件时,使用Terminal命令来显示隐藏文件 default…...
深入浅出:语言模型的原理、实战与评估
深入浅出:语言模型的原理、实战与评估 1. 引言1.1. 关于语言模型1.2. 语言模型的重要性 2. 语言模型简介2.1. 语言模型的类型2.2. 技术演进 3. 语言模型的原理3.1. 概率基础3.2. 深度学习模型 4. 语言模型的实战应用4.1. 数据准备4.2. 模型训练4.3. 应用场景 5. 语言…...

基于ssm的线上旅行信息管理系统论文
摘 要 随着旅游业的迅速发展,传统的旅行信息查询管理方式,已经无法满足用户需求,因此,结合计算机技术的优势和普及,特开发了本线上旅行信息管理系统。 本论文首先对线上旅行信息管理系统进行需求分析,从系…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...

图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
JavaScript基础-API 和 Web API
在学习JavaScript的过程中,理解API(应用程序接口)和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能,使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...