当前位置: 首页 > news >正文

FlinkSQL之Flink SQL Join二三事

​ Flink SQL支持对动态表进行复杂而灵活的连接操作。 为了处理不同的场景,需要多种查询语义,因此有几种不同类型的 Join。默认情况下,joins 的顺序是没有优化的。表的 join 顺序是在 FROM 从句指定的。可以通过把更新频率最低的表放在第一个、频率最高的放在最后这种方式来微调 join 查询的性能。需要确保表的顺序不会产生笛卡尔积,因为不支持这样的操作并且会导致查询失败。

​ Flink Join根据输入源形式不同可以分为双流Join维表Join其他Join多种形式,下面根据大类分别介绍各自特点。

一 双流JOIN

​ 在正式进入FlinkSQL Join场景研究之前,首先我们先介绍一下在FlinkSQL场景下常见的Kafka数据流分类。截止到Flink1.18为止,目前常见的Kafka数据流包括不含键更新的普通Kafka数据流(即Kafka SQL Connector数据流)和包含键更新的Kafka数据流(即Upsert-Kafka SQL Connector数据流)两种。

1 Regular Join

​ Regular join 是最通用的 join 类型。在这种 join 下,join 两侧表的任何新记录或变更都是可见的,并会影响整个 join 的结果。对于流式查询,regular join 的语法是最灵活的,允许任何类型的更新(插入、更新、删除)输入表。 然而,这种操作具有重要的操作意义:Flink 需要将 Join 输入的两边数据永远保持在状态中。 因此,计算查询结果所需的状态可能会无限增长,这取决于所有输入表的输入数据量。你可以提供一个合适的状态 time-to-live (TTL) 配置来防止状态过大。注意:这样做可能会影响查询的正确性。

​ 左右两边流数据都能驱动join,左侧流新加入数据会和右侧流状态中所有匹配记录join上;同理,右侧流新增数据会和左侧流所有匹配记录join上,外连接不会等待,即使Join不上也会即及时输出,待对侧数据到来通过回撤修复数据。

  • Inner Join

    根据 join 限制条件返回一个简单的笛卡尔积。目前只支持 equi-joins,即:至少有一个等值条件。不支持任意的 cross join 和 theta join。

    select t1.order_id    as order_id,t2.product_id  as product_id,t1.create_time as create_time
    from tbl_order t1 
    join tbl_order_product t2 on t1.order_id = t2.order_id 
    ;
    

    Inner join不会产生回撤流,source端可以是Kafka SQL Connector也可以试Upsert-kafka SQL Connector,也可以是混合模式,sink端理论均可以是Kafka Connector,但如果输入端有重复输入,输出端可以设置成Upsert-Kafka SQL Connector接收数据。Upsert-Kafka SQL Connector注意设置主键。

  • outer join

    返回所有符合条件的笛卡尔积(即:所有通过 join 条件连接的行),加上所有外表没有匹配到的行。Flink 支持 LEFT、RIGHT 和 FULL outer joins。目前只支持 equi-joins,即:至少有一个等值条件。不支持任意的 cross join 和 theta join。

    select t1.order_id    as order_id,t2.product_id  as product_id,t1.create_time as create_time
    from tbl_order t1 
    left join tbl_order_product t2 on t1.order_id = t2.order_id 
    ;select t1.order_id    as order_id,t2.product_id  as product_id,t1.create_time as create_time
    from tbl_order t1 
    right join tbl_order_product t2 on t1.order_id = t2.order_id 
    ;select t1.order_id    as order_id,t2.product_id  as product_id,t1.create_time as create_time
    from tbl_order t1 
    full join tbl_order_product t2 on t1.order_id = t2.order_id 
    ;
    

    Outer Join会产生回撤流,source端可以是Kafka SQL Connector也可以是Upsert-kafka SQL Connector,也可以是混合模式,sink端理仅支持设置成Upsert-Kafka SQL Connector接收数据。Upsert-Kafka SQL Connector注意设置主键。

  • Regular Join总结应用模式如下(a代表Append-Only流,u代表Upsert-Kafka流):

    • a join a => a|u

    • u join u => a|u

    • a join u => a|u

    • a left join a => u

    • u left join u => u

    • a left join u => u

2 Interval Join

​ 返回一个符合 join 条件和时间限制的简单笛卡尔积。Interval join 需要至少一个 equi-join 条件和一个 join 两边都包含的时间限定 join 条件。范围判断可以定义成就像一个条件(<, <=, >=, >),也可以是一个 BETWEEN 条件,或者两边表的一个相同类型(即:处理时间 或 事件时间)的时间属性 的等式判断。

​ 下面列举了一些有效的 interval join 时间条件:

  • ltime = rtime
  • ltime >= rtime AND ltime < rtime + INTERVAL '10' MINUTE
  • ltime BETWEEN rtime - INTERVAL '10' SECOND AND rtime + INTERVAL '5' SECOND

​ 对于流式查询,对比 regular join,interval join 只支持有时间属性的Append-Only表。 由于时间属性是递增的,Flink 从状态中移除旧值也不会影响结果的正确性,即interval join会根据间隔自动维护状态大小,不丢弃状态也不会让状态无限增长。

  • Inner join

    select * 
    from tbl_order t1 
    join tbl_shopment t2 on t1.order_id = t2.order_id and t1.create_time between t2.create_time - interval '4' hour and t2.create_time
    ;
    

    ​ 输入源只支持Kafka SQL Connector,不支持任何一方回撤流,这也可以理解,因为Interval Join是有时间属性参与Join的。输出数据可以是Kafka SQL Connector也可以试Upsert-kafka SQL Connector。Upsert-kafka SQL Connector要注意键设计。

  • Outer join

    select * 
    from tbl_order t1 
    left join tbl_shopment t2 on t1.order_id = t2.order_id and t1.create_time between t2.create_time - interval '4' hour and t2.create_time
    ;select * 
    from tbl_order t1 
    right join tbl_shopment t2 on t1.order_id = t2.order_id and t1.create_time between t2.create_time - interval '4' hour and t2.create_time
    ;select * 
    from tbl_order t1 
    full join tbl_shopment t2 on t1.order_id = t2.order_id and t1.create_time between t2.create_time - interval '4' hour and t2.create_time
    ;
    

    ​ 输入端仅至此Kafka SQL Connector,不支持任何一方回撤流,这也可以理解,因为Interval Join是有时间属性参与Outer Join的。输出数据可以是Kafka SQL Connector也可以试Upsert-kafka SQL Connector。Upsert-kafka SQL Connector要注意键设计。

  • 注意点

    • 测试要配置并行度为1,否则右表关联不上数据因为水位线识别不到会而不超时输出;

      executionEnvironment.setParallelism(1);
      
    • left join右表关联不上输出条件

      • 右表关联数据出现触发输出
      • 超时触发器输出关联不上数据
  • Interval Join总结应用模式如下(a代表Append-Only流,u代表Upsert-Kafka流):

    • a join a => a|u

    • a left join a => a|u

3 Temporal Join(Snapshot Join)

​ 时态表(Temporal table)是一个随时间变化的表:在 Flink 中被称为动态表。时态表中的行与一个或多个时间段相关联,所有 Flink 中的表都是时态的(Temporal)。 时态表包含一个或多个版本的表快照,它可以是一个变化的历史表,跟踪变化(例如,数据库变化日志,包含所有快照)或一个变化的维度表,也可以是一个将变更物化的维表(例如,存放最终快照的数据表)。

  • Inner join

    select t1.order_id    as order_id,t1.user_id     as user_id,t2.user_name   as user_name,t1.create_time as create_time
    from tbl_order t1 
    join tbl_user for system_time as of t1.create_time t2 on t1.user_id = t2.user_id 
    ;
    

    特点:

    • 左右两边事件时间属性,标识两侧流join场景,如果处理时间请参考Lookup join;
    • 只支持event-time,如果是processing-time那么就变成join最新版本数据,同Lookup Join;
    • 左表支持append流和upsert流;
    • 右表只支持upsert流;
    • 输出可以是append流或者upsert流;
    • 左表触发计算,右表更新不触发计算;
    • 设置超时时间:tableEnvironment.getConfig().set("table.exec.source.idle-timeout","3s");
  • Left join

    select t1.order_id    as order_id,t1.user_id     as user_id,t2.user_name   as user_name,t1.create_time as create_time
    from tbl_order t1 
    left join tbl_user for system_time as of t1.create_time t2 on t1.user_id = t2.user_id 
    ;
    

    特点:

    • 左右两边事件时间属性,标识两侧流join场景,如果处理时间请参考Lookup join;
    • 只支持event-time,如果是processing-time那么就变成join最新版本数据,同Lookup Join;
    • 左表支持append流和upsert流;
    • 右表只支持upsert流;
    • 输出可以是append流或者upsert流;
    • 左表触发计算,右表更新不触发计算;
    • 设置超时时间:tableEnvironment.getConfig().set("table.exec.source.idle-timeout","3s");
  • Snapshot Join总结应用模式如下(a代表Append-Only流,u代表Upsert-Kafka流):

    • a join u => a|u

    • u join u => u

    • a left join u => a|u

    • u left join u => u

4 Window Join

​ 窗口关联就是增加时间维度到关联条件中。在此过程中,窗口关联将两个流中在同一窗口且符合 join 条件的元素 join 起来。窗口关联的语义和DataStream window join相同。

​ 在流式查询中,与其他连续表上的关联不同,窗口关联不产生中间结果,只在窗口结束产生一个最终的结果。另外,窗口关联会清除不需要的中间状态。

​ 通常,窗口关联和窗口表值函数一起使用。而且,窗口关联可以在其他基于窗口表值函数的操作后使用,例如窗口聚合,窗口 Top-N和窗口关联。

​ 目前,窗口关联需要在 join on 条件中包含两个输入表的 window_start 等值条件和 window_end 等值条件。

​ 窗口关联支持 INNER/LEFT/RIGHT/FULL OUTER/ANTI/SEMI JOIN。

  • 语法

    select ...
    from l [left|right|full outer] join r -- l and r are relations applied windowing TVF
    on l.window_start = r.window_start and l.window_end = r.window_end and ...
    
  • 注意

    • 当前版本窗口Join必须同时指定window_start和window_end等值条件

    • 窗口Join不支持源是upsert流的情况

  • 限制

    • Join 子句的限制

    ​ 目前,窗口关联需要在 join on 条件中包含两个输入表的 window_start 等值条件和 window_end 等值条件。未来,如果是滚动或滑动窗口,只需要在 join on 条件中包含窗口开始相等即可。

    • 输入的窗口表值函数的限制

    ​ 目前,关联的左右两边必须使用相同的窗口表值函数。这个规则在未来可以扩展,比如:滚动和滑动窗口在窗口大小相同的情况下 join。

    • 窗口表值函数之后直接使用窗口关联的限制

    ​ 目前窗口关联支持作用在滚动(TUMBLE)、滑动(HOP)和累积(CUMULATE)窗口表值函数之上,但是还不支持会话窗口(SESSION)。

  • Snapshot Join总结应用模式如下(a代表Append-Only流,u代表Upsert-Kafka流):

    • a join a => a|u

    • a left join a => a|u

二 维表JOIN

5 Lookup Join(processing-time temporal join)

​ lookup join 通常用于使用从外部系统查询的数据来丰富表。join 要求一个表具有处理时间属性,另一个表由查找源连接器(lookup source connnector)支持。通常使用基于处理时间的流表与外部版本表(例如 mysql、hbase)的最新版本相关联(即processing-time temporal join 常常用在使用外部系统来丰富流的数据)。

​ 通过定义一个处理时间属性,这个 join 总是返回最新的值。可以将 build side 中被查找的表想象成一个存储所有记录简单的 HashMap<K,V>。 这种 join 的强大之处在于,当无法在 Flink 中将表具体化为动态表时,它允许 Flink 直接针对外部系统工作。

​ Join操作由流端触发,当新增一个流数据,会查询外部DB映射,获取数据补全后发出结果数据。

  • inner join

    select t1.order_id    as order_id,t1.user_id     as user_id,t2.user_name   as user_name,t1.create_time as create_time
    from tbl_order t1 
    join tbl_user for system_time as of t1.create_time t2 on t1.user_id = t2.user_id 
    ;
    

    特点:

    • Lookup join只支持inner join和left join;
    • 源必须声明处理时间,即row_time as proctime(),如果源声明为事件时间,那么要走Snapshot join方式;
    • 源支持kafka和upsert-kafka连接器
    • 输出支持kafka和upsert-kafka连接器
    • 查询外部表注意使用异步IO/Cache特性优化外表查询性能
  • Left join

    select t1.order_id    as order_id,t1.user_id     as user_id,t2.user_name   as user_name,t1.create_time as create_time
    from tbl_order t1 
    left join tbl_user for system_time as of t1.create_time t2 on t1.user_id = t2.user_id 
    ;
    

    特点:

    • Lookup join只支持inner join和left join;
    • 源必须声明处理时间,即row_time as proctime(),如果源声明为事件时间,那么要走Snapshot join方式;
    • 源支持kafka和upsert-kafka连接器
    • 输出支持kafka和upsert-kafka连接器
    • 查询外部表注意使用异步IO/Cache特性优化外表查询性能
  • Lookup Join总结应用模式如下(a代表Append-Only流,s代表外表静态表):

    • a join s => a|u

    • u join s => a|u

    • a left join s => a|u

    • u left join s => a|u

三 其他JOIN

6 Array Expansion

​ 对于输入的包含数组列的单行数据,返回给定数组中每个元素的新行,拆分后的数据除解析数组元素外,其他元素与原始行数据一致。

selectorder_id,order_tag,tag
from tbl_order_source cross join unnest(order_tag) as t(tag)
;

特征:

  • 输入数据可以是Append或者Upsert
  • 输出数据可以是Append或者Upsert

7 Table Function

​ 将表与表函数的结果联接。左侧(外部)表的每一行都与表函数的相应调用产生的所有行相连接。用户自定义表函数必须在使用前注册。

​ 对于是inner join,如果表函数调用返回一个空结果,那么左表的这行数据将不会输出。对于left join,如果表函数调用返回了一个空结果,则保留相应的行,并用空值填充未关联到的结果。当前,针对 lateral table 的 left outer join 需要 ON 子句中有一个固定的 TRUE 连接条件。

select order_id,order_tag,tag
from tbl_order_source
left join lateral table(table_func(order_tag)) t(tag) on true
;

特征:

  • 输入数据可以是Append或者Upsert
  • 输出数据可以是Append或者Upsert

相关文章:

FlinkSQL之Flink SQL Join二三事

​ Flink SQL支持对动态表进行复杂而灵活的连接操作。 为了处理不同的场景&#xff0c;需要多种查询语义&#xff0c;因此有几种不同类型的 Join。默认情况下&#xff0c;joins 的顺序是没有优化的。表的 join 顺序是在 FROM 从句指定的。可以通过把更新频率最低的表放在第一个…...

某某消消乐增加步数漏洞分析

一、漏洞简介 1&#xff09; 漏洞所属游戏名及基本介绍&#xff1a;某某消消乐&#xff0c;三消游戏&#xff0c;类似爱消除。 2&#xff09; 漏洞对应游戏版本及平台&#xff1a;某某消消乐Android 1.22.22。 3&#xff09; 漏洞功能&#xff1a;增加游戏步数。 4&#xf…...

SpringBoot动态数据源实现

一、背景 一个应用难免需要连接多个数据库&#xff0c;像我们系统起码连接了5个以上数据库&#xff0c;AWS RDS主库&#xff0c;ECS自搭MySQL从库&#xff0c;工厂系统三个SQLServer数据库&#xff0c;在线网站MySQL数据库&#xff0c;记得很早以前是用SessionFactory配置&…...

计算机网络常见题(持续更新中~)

1 描述一下HTTP和HTTPS的区别 2 Cookie和Session有什么区别 3 如果没有Cookie,Session还能进行身份验证吗&#xff1f; 4 BOI,NIO,AIO分别是什么 5 Netty的线程模型是怎么样的 6 Netty是什么&#xff1f;和Tomcat有什么区别&#xff0c;特点是什么&#xff1f; 7 TCP的三次…...

富格林:可信招数揭发防备暗箱陷阱

富格林悉知&#xff0c;在风云变幻的金融市场中&#xff0c;炒贵金属是一项具有高收益潜力的投资方式。但投资是风险与收益共存的&#xff0c;因此我们在做单投资过程中需总结可信招数揭发暗箱陷阱&#xff0c;防备受害亏损。以下总结几点可信的投资技巧&#xff0c;希望能够帮…...

获取高德安全码SHA1

高德开发者平台上给的三种方法 获取安全码SHA1&#xff0c;这里我自己使用的是第三种方法。 1、通过Eclipse编译器获取SHA1 使用 adt 22 以上版本&#xff0c;可以在 eclipse 中直接查看。 Windows&#xff1a;依次在 eclipse 中打开 Window -> Preferances -> Androi…...

关于RPC

初识RPC RPC VS REST HTTP Dubbo Dubbo 特性&#xff1a; 基于接口动态代理的远程方法调用 Dubbo对开发者屏蔽了底层的调用细节&#xff0c;在实际代码中调用远程服务就像调用一个本地接口类一样方便。这个功能和Fegin很类似&#xff0c;但是Dubbo用起来比Fegin还要简单很多&a…...

pulsar: kafka on pulsar之把pulsar当kafka用

一、下载协议包&#xff08;要和pulsar版本比较一致&#xff09; https://github.com/streamnative/kop/releases?q2.8.0&expandedtrue二、在pulsar的根目录创建一个protocols目录&#xff0c;将上述包放到这个目录里 三、编辑broker.conf(如果是集群)或者standalone.con…...

七月论文审稿GPT第4版:通过paper-review数据集微调Mixtral-8x7b

模型训练 Mixtral-8x7b地址&#xff1a;魔搭社区 GitHub: hiyouga/LLaMA-Factory: Unify Efficient Fine-tuning of 100 LLMs (github.com) 环境配置 git clone https://github.com/hiyouga/LLaMA-Factory.git conda create -n llama_factory python3.10 conda activate lla…...

基于 YOLO V8 Fine-Tuning 训练自定义的目标检测模型

一、YOLO V8 YOLO V8 是由 2023 年 ultralytics 公司开源的发布&#xff0c;是结合了前几代 YOLO 的融合改进版。YOLO V8 支持全方位的视觉 AI 任务&#xff0c;包括检测、分割、姿态估计、跟踪和分类。并且在速度和准确性方面具有无与伦比的性能。能够应用在各种对速度和精度…...

快手,得物,蓝月亮,蓝禾,奇安信,三七互娱,顺丰,康冠科技,金证科技24春招内推

快手&#xff0c;得物&#xff0c;蓝月亮&#xff0c;蓝禾&#xff0c;奇安信&#xff0c;三七互娱&#xff0c;顺丰&#xff0c;康冠科技&#xff0c;金证科技24春招内推 ①得物 【岗位】技术&#xff0c;设计&#xff0c;供应链&#xff0c;风控&#xff0c;产品&#xff0c;…...

全局UI方法-弹窗二-列表选择弹窗(ActionSheet)

1、描述 定义列表弹窗 2、接口 ActionSheet.show(value:{ title: string | Resource, message: string | Resource, autoCancel?: boolean, confrim?: {value: string | Resource, action: () > void }, cancel?: () > void, alignment?: DialogAlignment, …...

Memcached分布式内存对象数据库

一 Memcached 概念 Memcached 是一个高性能的分布式内存对象缓存系统&#xff0c;用于动态 Web 应用以减轻数据库负载。它通过在内存中缓存数据和对象来减少读取数据库的次数&#xff0c;从而提高动态、数据库驱动网站的速度。 二 在架构中的位置 Memcached 处于前端或中间件后…...

华为广告打包报错,问题思考

华为广告打包时报错 fata日志不一样能反映出完整的错误日志信息&#xff0c;仅看fata日志具有误导性&#xff0c;有可能指向错误的方向。 通过看完整的日志可见&#xff0c;错误的原因为 Caused by: java.lang.ClassNotFoundException: com.huawei.hms.ads.base.R$dimenfata日…...

docker-compose mysql

使用docker-compose 部署 MySQL&#xff08;所有版本通用&#xff09; 一、拉取MySQL镜像 我这里使用的是MySQL8.0.18&#xff0c;可以自行选择需要的版本。 docker pull mysql:8.0.18二、创建挂载目录 mkdir -p /data/mysql8/log mkdir -p /data/mysql8/data mkdir -p /dat…...

PGAdmin 4:用于管理和维护PostgreSQL数据库的强大工具

PGAdmin 4 是一款用于管理和维护PostgreSQL数据库的强大工具。它提供了丰富的功能&#xff0c;帮助数据库管理员和开发人员轻松管理他们的数据库。 下载地址&#xff1a;https://www.pgadmin.org/download/&#xff0c;如常用windows和rpm版本 本地使用&#xff1a;windows …...

成都市酷客焕学新媒体科技有限公司:实现品牌的更大价值!

成都市酷客焕学新媒体科技有限公司专注于短视频营销&#xff0c;深知短视频在社交媒体中的巨大影响力。该公司巧妙地将品牌信息融入富有创意和趣味性的内容中&#xff0c;使观众在轻松愉悦的氛围中接受并传播这些信息。凭借独特的创意和精准的营销策略&#xff0c;成都市酷客焕…...

探索数据库--------------mysql主从复制和读写分离

目录 前言 为什么要主从复制&#xff1f; 主从复制谁复制谁&#xff1f; 数据放在什么地方&#xff1f; 一、mysql支持的复制类型 1.1STATEMENT&#xff1a;基于语句的复制 1.2ROW&#xff1a;基于行的复制 1.3MIXED&#xff1a;混合类型的复制 二、主从复制的工作过程 三个重…...

【Hello,PyQt】控件拖拽

在 PyQt 中实现控件拖拽功能的详细介绍 拖拽功能是现代用户界面设计中常见的交互方式之一&#xff0c;它可以提高用户体验&#xff0c;增加操作的直观性。在 PyQt 中&#xff0c;我们可以很容易地实现控件之间的拖拽功能。本文将介绍如何在 PyQt 中实现控件的拖拽功能。 如何实…...

荟萃分析R Meta-Analyses 3 Effect Sizes

总结 效应量是荟萃分析的基石。为了进行荟萃分析&#xff0c;我们至少需要估计效应大小及其标准误差。 效应大小的标准误差代表研究对效应估计的精确程度。荟萃分析以更高的精度和更高的权重给出效应量&#xff0c;因为它们可以更好地估计真实效应。 我们可以在荟萃分析中使用…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...

日常一水C

多态 言简意赅&#xff1a;就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过&#xff0c;当子类和父类的函数名相同时&#xff0c;会隐藏父类的同名函数转而调用子类的同名函数&#xff0c;如果要调用父类的同名函数&#xff0c;那么就需要对父类进行引用&#…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋

随着工业以太网的发展&#xff0c;其高效、便捷、协议开放、易于冗余等诸多优点&#xff0c;被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口&#xff0c;具有实时性、开放性&#xff0c;使用TCP/IP和IT标准&#xff0c;符合基于工业以太网的…...

Python第七周作业

Python第七周作业 文章目录 Python第七周作业 1.使用open以只读模式打开文件data.txt&#xff0c;并逐行打印内容 2.使用pathlib模块获取当前脚本的绝对路径&#xff0c;并创建logs目录&#xff08;若不存在&#xff09; 3.递归遍历目录data&#xff0c;输出所有.csv文件的路径…...

OpenGL-什么是软OpenGL/软渲染/软光栅?

‌软OpenGL&#xff08;Software OpenGL&#xff09;‌或者软渲染指完全通过CPU模拟实现的OpenGL渲染方式&#xff08;包括几何处理、光栅化、着色等&#xff09;&#xff0c;不依赖GPU硬件加速。这种模式通常性能较低&#xff0c;但兼容性极强&#xff0c;常用于不支持硬件加速…...

uniapp获取当前位置和经纬度信息

1.1. 获取当前位置和经纬度信息&#xff08;需要配置高的SDK&#xff09; 调用uni-app官方API中的uni.chooseLocation()&#xff0c;即打开地图选择位置。 <button click"getAddress">获取定位</button> const getAddress () > {uni.chooseLocatio…...