当前位置: 首页 > news >正文

七月论文审稿GPT第4版:通过paper-review数据集微调Mixtral-8x7b

模型训练

Mixtral-8x7b地址:魔搭社区

GitHub: hiyouga/LLaMA-Factory: Unify Efficient Fine-tuning of 100+ LLMs (github.com)

环境配置

git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
cd /root/path/LLaMA-Factory
pip install -r requirements.txt

有些得单独版本对齐,本人使用的是cuda11.8

pip install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url https://download.pytorch.org/whl/cu118
pip install bitsandbytes==0.41.3
# 下载对应版本 https://github.com/Dao-AILab/flash-attention/releases
pip install flash_attn-2.5.2+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl

训练代码

python src/train_bash.py \--stage sft \--do_train True \--model_name_or_path /root/weights/Mixtral-8x7B-Instruct-v0.1 \--finetuning_type lora \--quantization_bit 4 \--template mistral \--flash_attn True \--dataset_dir data \--dataset paper_review_data \--cutoff_len 12288 \--learning_rate 5e-05 \--num_train_epochs 3.0 \--max_samples 1000000 \--per_device_train_batch_size 16 \--gradient_accumulation_steps 1 \--lr_scheduler_type cosine \--max_grad_norm 0.3 \--logging_steps 10 \--warmup_steps 0 \--lora_rank 128 \--save_steps 1000 \--lora_dropout 0.05 \--lora_target q_proj,o_proj,k_proj,v_proj,down_proj,gate_proj,up_proj \--output_dir saves/Mixtral-8x7B-Chat/lora/train_2024-03-23 \--fp16 True \--plot_loss True

模型推理

部署API接口

这里使用lora执行src/api_demo.py时会出现一个问题:

NotImplementedError: Cannot copy out of meta tensor; no data! · Issue #2940 · hiyouga/LLaMA-Factory (github.com)

解决方案:训练时使用了--quantization_bit 4 和 --flash_attn True,这里也要使用统一的才行。

CUDA_VISIBLE_DEVICES=0 API_PORT=8000 python src/api_demo.py \--model_name_or_path /root/weights/Mixtral-8x7B-Instruct-v0.1 \--adapter_name_or_path /root/path/saves/Mixtral-8x7B-Chat/lora/train_train_2024-03-23 \--template mistral \--finetuning_type lora \--quantization_bit 4 \--flash_attn True

推理所需显存为34318MiB

调用API接口

更多见七月的《大模型商用项目之审稿GPT微调实战》

相关文章:

七月论文审稿GPT第4版:通过paper-review数据集微调Mixtral-8x7b

模型训练 Mixtral-8x7b地址:魔搭社区 GitHub: hiyouga/LLaMA-Factory: Unify Efficient Fine-tuning of 100 LLMs (github.com) 环境配置 git clone https://github.com/hiyouga/LLaMA-Factory.git conda create -n llama_factory python3.10 conda activate lla…...

基于 YOLO V8 Fine-Tuning 训练自定义的目标检测模型

一、YOLO V8 YOLO V8 是由 2023 年 ultralytics 公司开源的发布,是结合了前几代 YOLO 的融合改进版。YOLO V8 支持全方位的视觉 AI 任务,包括检测、分割、姿态估计、跟踪和分类。并且在速度和准确性方面具有无与伦比的性能。能够应用在各种对速度和精度…...

快手,得物,蓝月亮,蓝禾,奇安信,三七互娱,顺丰,康冠科技,金证科技24春招内推

快手,得物,蓝月亮,蓝禾,奇安信,三七互娱,顺丰,康冠科技,金证科技24春招内推 ①得物 【岗位】技术,设计,供应链,风控,产品,…...

全局UI方法-弹窗二-列表选择弹窗(ActionSheet)

1、描述 定义列表弹窗 2、接口 ActionSheet.show(value:{ title: string | Resource, message: string | Resource, autoCancel?: boolean, confrim?: {value: string | Resource, action: () > void }, cancel?: () > void, alignment?: DialogAlignment, …...

Memcached分布式内存对象数据库

一 Memcached 概念 Memcached 是一个高性能的分布式内存对象缓存系统,用于动态 Web 应用以减轻数据库负载。它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态、数据库驱动网站的速度。 二 在架构中的位置 Memcached 处于前端或中间件后…...

华为广告打包报错,问题思考

华为广告打包时报错 fata日志不一样能反映出完整的错误日志信息,仅看fata日志具有误导性,有可能指向错误的方向。 通过看完整的日志可见,错误的原因为 Caused by: java.lang.ClassNotFoundException: com.huawei.hms.ads.base.R$dimenfata日…...

docker-compose mysql

使用docker-compose 部署 MySQL(所有版本通用) 一、拉取MySQL镜像 我这里使用的是MySQL8.0.18,可以自行选择需要的版本。 docker pull mysql:8.0.18二、创建挂载目录 mkdir -p /data/mysql8/log mkdir -p /data/mysql8/data mkdir -p /dat…...

PGAdmin 4:用于管理和维护PostgreSQL数据库的强大工具

PGAdmin 4 是一款用于管理和维护PostgreSQL数据库的强大工具。它提供了丰富的功能,帮助数据库管理员和开发人员轻松管理他们的数据库。 下载地址:https://www.pgadmin.org/download/,如常用windows和rpm版本 本地使用:windows …...

成都市酷客焕学新媒体科技有限公司:实现品牌的更大价值!

成都市酷客焕学新媒体科技有限公司专注于短视频营销,深知短视频在社交媒体中的巨大影响力。该公司巧妙地将品牌信息融入富有创意和趣味性的内容中,使观众在轻松愉悦的氛围中接受并传播这些信息。凭借独特的创意和精准的营销策略,成都市酷客焕…...

探索数据库--------------mysql主从复制和读写分离

目录 前言 为什么要主从复制? 主从复制谁复制谁? 数据放在什么地方? 一、mysql支持的复制类型 1.1STATEMENT:基于语句的复制 1.2ROW:基于行的复制 1.3MIXED:混合类型的复制 二、主从复制的工作过程 三个重…...

【Hello,PyQt】控件拖拽

在 PyQt 中实现控件拖拽功能的详细介绍 拖拽功能是现代用户界面设计中常见的交互方式之一,它可以提高用户体验,增加操作的直观性。在 PyQt 中,我们可以很容易地实现控件之间的拖拽功能。本文将介绍如何在 PyQt 中实现控件的拖拽功能。 如何实…...

荟萃分析R Meta-Analyses 3 Effect Sizes

总结 效应量是荟萃分析的基石。为了进行荟萃分析,我们至少需要估计效应大小及其标准误差。 效应大小的标准误差代表研究对效应估计的精确程度。荟萃分析以更高的精度和更高的权重给出效应量,因为它们可以更好地估计真实效应。 我们可以在荟萃分析中使用…...

常用的8个应用和中间件的Docker运行示例

文章目录 1、Docker Web 管理工具 portainer2、在线代码编辑器 Code Server3、MySQL4、Redis5、Nginx6、PostgreSQL7、媒体管理工具 Dim8、Gitlab 1、Docker Web 管理工具 portainer Portainer 是一个轻量级的管理 UI ,可让你轻松管理不同的 Docker 环境&#xff0…...

UnoCSS实现背景图片样式加载

UnoCSS是一个好东西,可以把任何style样式通过css去描述。但是默认使用的tailwindcss有一个不完美,就是当使用图片时,背景图片无法通过原子化css直接描述。例如有一个背景图片,则必须为该图片单独出一个css样式,然后再加…...

vue前端工程化

前言 本文介绍的是有关于vue方面的前端工程化实践,主要通过实践操作让开发人员更好的理解整个前端工程化的流程。 本文通过开发准备阶段、开发阶段和开发完成三个阶段开介绍vue前端工程化的整体过程。 准备阶段 准备阶段我将其分为:框架选择、规范制…...

面向对象:继承

文章目录 一、什么叫继承?二、单继承三、多继承3.1多继承的各种情况3.1.1一般情况3.1.1特殊情况(菱形继承) 四、菱形继承引发的问题4.1 问题1:数据冗余4.2 问题2:二义性(无法确定到底是访问哪个) 五、虚拟继承解决菱形…...

ES学习日记(一)-------单节点安装启动

基于ES7.4.1编写,其实一开始用的最新的8.1,但是问题太多了!!!!不稳定,降到7.4 下载好的安装包上传到服务器或虚拟机,创建ES目录,命令mkdir -p /路径xxxx 复制安装包到指定路径并解压: tar zxvf elasticsearch-8.1.0-linux-x86_64.tar.gz -C /usr/local/es/ 进入bin目录安装,命…...

【管理咨询宝藏59】某大型汽车物流战略咨询报告

本报告首发于公号“管理咨询宝藏”,如需阅读完整版报告内容,请查阅公号“管理咨询宝藏”。 【管理咨询宝藏59】某大型汽车物流战略咨询报告 【格式】PDF 【关键词】HR调研、商业分析、管理咨询 【核心观点】 - 重新评估和调整商业模式,开拓…...

ArcGIS Pro横向水平图例

终于知道ArcGIS Pro怎么调横向图例了! 简单的像0一样 旋转,左转右转随便转 然后调整图例项间距就可以了,参数太多就随便试,总有一款适合你! 要调整长度,就调整图例块的大小。完美! 好不容易…...

线程创建的几种方式

1.继承Thread类 class MyThread extends Thread {public void run() {// 线程执行的任务for (int i 0; i < 5; i) {System.out.println("Thread: " i);try {Thread.sleep(1000); // 使线程休眠 1 秒} catch (InterruptedException e) {e.printStackTrace();}}}…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...

华为OD机考-机房布局

import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...

Linux安全加固:从攻防视角构建系统免疫

Linux安全加固:从攻防视角构建系统免疫 构建坚不可摧的数字堡垒 引言:攻防对抗的新纪元 在日益复杂的网络威胁环境中,Linux系统安全已从被动防御转向主动免疫。2023年全球网络安全报告显示,高级持续性威胁(APT)攻击同比增长65%,平均入侵停留时间缩短至48小时。本章将从…...