七月论文审稿GPT第4版:通过paper-review数据集微调Mixtral-8x7b
模型训练
Mixtral-8x7b地址:魔搭社区
GitHub: hiyouga/LLaMA-Factory: Unify Efficient Fine-tuning of 100+ LLMs (github.com)
环境配置
git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
cd /root/path/LLaMA-Factory
pip install -r requirements.txt
有些得单独版本对齐,本人使用的是cuda11.8
pip install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url https://download.pytorch.org/whl/cu118
pip install bitsandbytes==0.41.3
# 下载对应版本 https://github.com/Dao-AILab/flash-attention/releases
pip install flash_attn-2.5.2+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
训练代码
python src/train_bash.py \--stage sft \--do_train True \--model_name_or_path /root/weights/Mixtral-8x7B-Instruct-v0.1 \--finetuning_type lora \--quantization_bit 4 \--template mistral \--flash_attn True \--dataset_dir data \--dataset paper_review_data \--cutoff_len 12288 \--learning_rate 5e-05 \--num_train_epochs 3.0 \--max_samples 1000000 \--per_device_train_batch_size 16 \--gradient_accumulation_steps 1 \--lr_scheduler_type cosine \--max_grad_norm 0.3 \--logging_steps 10 \--warmup_steps 0 \--lora_rank 128 \--save_steps 1000 \--lora_dropout 0.05 \--lora_target q_proj,o_proj,k_proj,v_proj,down_proj,gate_proj,up_proj \--output_dir saves/Mixtral-8x7B-Chat/lora/train_2024-03-23 \--fp16 True \--plot_loss True
模型推理
部署API接口
这里使用lora执行src/api_demo.py时会出现一个问题:
NotImplementedError: Cannot copy out of meta tensor; no data! · Issue #2940 · hiyouga/LLaMA-Factory (github.com)
解决方案:训练时使用了--quantization_bit 4 和 --flash_attn True,这里也要使用统一的才行。
CUDA_VISIBLE_DEVICES=0 API_PORT=8000 python src/api_demo.py \--model_name_or_path /root/weights/Mixtral-8x7B-Instruct-v0.1 \--adapter_name_or_path /root/path/saves/Mixtral-8x7B-Chat/lora/train_train_2024-03-23 \--template mistral \--finetuning_type lora \--quantization_bit 4 \--flash_attn True
推理所需显存为34318MiB
调用API接口
更多见七月的《大模型商用项目之审稿GPT微调实战》
相关文章:
七月论文审稿GPT第4版:通过paper-review数据集微调Mixtral-8x7b
模型训练 Mixtral-8x7b地址:魔搭社区 GitHub: hiyouga/LLaMA-Factory: Unify Efficient Fine-tuning of 100 LLMs (github.com) 环境配置 git clone https://github.com/hiyouga/LLaMA-Factory.git conda create -n llama_factory python3.10 conda activate lla…...

基于 YOLO V8 Fine-Tuning 训练自定义的目标检测模型
一、YOLO V8 YOLO V8 是由 2023 年 ultralytics 公司开源的发布,是结合了前几代 YOLO 的融合改进版。YOLO V8 支持全方位的视觉 AI 任务,包括检测、分割、姿态估计、跟踪和分类。并且在速度和准确性方面具有无与伦比的性能。能够应用在各种对速度和精度…...
快手,得物,蓝月亮,蓝禾,奇安信,三七互娱,顺丰,康冠科技,金证科技24春招内推
快手,得物,蓝月亮,蓝禾,奇安信,三七互娱,顺丰,康冠科技,金证科技24春招内推 ①得物 【岗位】技术,设计,供应链,风控,产品,…...

全局UI方法-弹窗二-列表选择弹窗(ActionSheet)
1、描述 定义列表弹窗 2、接口 ActionSheet.show(value:{ title: string | Resource, message: string | Resource, autoCancel?: boolean, confrim?: {value: string | Resource, action: () > void }, cancel?: () > void, alignment?: DialogAlignment, …...

Memcached分布式内存对象数据库
一 Memcached 概念 Memcached 是一个高性能的分布式内存对象缓存系统,用于动态 Web 应用以减轻数据库负载。它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态、数据库驱动网站的速度。 二 在架构中的位置 Memcached 处于前端或中间件后…...

华为广告打包报错,问题思考
华为广告打包时报错 fata日志不一样能反映出完整的错误日志信息,仅看fata日志具有误导性,有可能指向错误的方向。 通过看完整的日志可见,错误的原因为 Caused by: java.lang.ClassNotFoundException: com.huawei.hms.ads.base.R$dimenfata日…...

docker-compose mysql
使用docker-compose 部署 MySQL(所有版本通用) 一、拉取MySQL镜像 我这里使用的是MySQL8.0.18,可以自行选择需要的版本。 docker pull mysql:8.0.18二、创建挂载目录 mkdir -p /data/mysql8/log mkdir -p /data/mysql8/data mkdir -p /dat…...

PGAdmin 4:用于管理和维护PostgreSQL数据库的强大工具
PGAdmin 4 是一款用于管理和维护PostgreSQL数据库的强大工具。它提供了丰富的功能,帮助数据库管理员和开发人员轻松管理他们的数据库。 下载地址:https://www.pgadmin.org/download/,如常用windows和rpm版本 本地使用:windows …...

成都市酷客焕学新媒体科技有限公司:实现品牌的更大价值!
成都市酷客焕学新媒体科技有限公司专注于短视频营销,深知短视频在社交媒体中的巨大影响力。该公司巧妙地将品牌信息融入富有创意和趣味性的内容中,使观众在轻松愉悦的氛围中接受并传播这些信息。凭借独特的创意和精准的营销策略,成都市酷客焕…...

探索数据库--------------mysql主从复制和读写分离
目录 前言 为什么要主从复制? 主从复制谁复制谁? 数据放在什么地方? 一、mysql支持的复制类型 1.1STATEMENT:基于语句的复制 1.2ROW:基于行的复制 1.3MIXED:混合类型的复制 二、主从复制的工作过程 三个重…...

【Hello,PyQt】控件拖拽
在 PyQt 中实现控件拖拽功能的详细介绍 拖拽功能是现代用户界面设计中常见的交互方式之一,它可以提高用户体验,增加操作的直观性。在 PyQt 中,我们可以很容易地实现控件之间的拖拽功能。本文将介绍如何在 PyQt 中实现控件的拖拽功能。 如何实…...

荟萃分析R Meta-Analyses 3 Effect Sizes
总结 效应量是荟萃分析的基石。为了进行荟萃分析,我们至少需要估计效应大小及其标准误差。 效应大小的标准误差代表研究对效应估计的精确程度。荟萃分析以更高的精度和更高的权重给出效应量,因为它们可以更好地估计真实效应。 我们可以在荟萃分析中使用…...

常用的8个应用和中间件的Docker运行示例
文章目录 1、Docker Web 管理工具 portainer2、在线代码编辑器 Code Server3、MySQL4、Redis5、Nginx6、PostgreSQL7、媒体管理工具 Dim8、Gitlab 1、Docker Web 管理工具 portainer Portainer 是一个轻量级的管理 UI ,可让你轻松管理不同的 Docker 环境࿰…...
UnoCSS实现背景图片样式加载
UnoCSS是一个好东西,可以把任何style样式通过css去描述。但是默认使用的tailwindcss有一个不完美,就是当使用图片时,背景图片无法通过原子化css直接描述。例如有一个背景图片,则必须为该图片单独出一个css样式,然后再加…...

vue前端工程化
前言 本文介绍的是有关于vue方面的前端工程化实践,主要通过实践操作让开发人员更好的理解整个前端工程化的流程。 本文通过开发准备阶段、开发阶段和开发完成三个阶段开介绍vue前端工程化的整体过程。 准备阶段 准备阶段我将其分为:框架选择、规范制…...

面向对象:继承
文章目录 一、什么叫继承?二、单继承三、多继承3.1多继承的各种情况3.1.1一般情况3.1.1特殊情况(菱形继承) 四、菱形继承引发的问题4.1 问题1:数据冗余4.2 问题2:二义性(无法确定到底是访问哪个) 五、虚拟继承解决菱形…...

ES学习日记(一)-------单节点安装启动
基于ES7.4.1编写,其实一开始用的最新的8.1,但是问题太多了!!!!不稳定,降到7.4 下载好的安装包上传到服务器或虚拟机,创建ES目录,命令mkdir -p /路径xxxx 复制安装包到指定路径并解压: tar zxvf elasticsearch-8.1.0-linux-x86_64.tar.gz -C /usr/local/es/ 进入bin目录安装,命…...

【管理咨询宝藏59】某大型汽车物流战略咨询报告
本报告首发于公号“管理咨询宝藏”,如需阅读完整版报告内容,请查阅公号“管理咨询宝藏”。 【管理咨询宝藏59】某大型汽车物流战略咨询报告 【格式】PDF 【关键词】HR调研、商业分析、管理咨询 【核心观点】 - 重新评估和调整商业模式,开拓…...

ArcGIS Pro横向水平图例
终于知道ArcGIS Pro怎么调横向图例了! 简单的像0一样 旋转,左转右转随便转 然后调整图例项间距就可以了,参数太多就随便试,总有一款适合你! 要调整长度,就调整图例块的大小。完美! 好不容易…...
线程创建的几种方式
1.继承Thread类 class MyThread extends Thread {public void run() {// 线程执行的任务for (int i 0; i < 5; i) {System.out.println("Thread: " i);try {Thread.sleep(1000); // 使线程休眠 1 秒} catch (InterruptedException e) {e.printStackTrace();}}}…...

UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险
C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...

逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...
作为测试我们应该关注redis哪些方面
1、功能测试 数据结构操作:验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化:测试aof和aof持久化机制,确保数据在开启后正确恢复。 事务:检查事务的原子性和回滚机制。 发布订阅:确保消息正确传递。 2、性…...
python爬虫——气象数据爬取
一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用: 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests:发送 …...

wpf在image控件上快速显示内存图像
wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像(比如分辨率3000*3000的图像)的办法,尤其是想把内存中的裸数据(只有图像的数据,不包…...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器
拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件: 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...
学习一下用鸿蒙DevEco Studio HarmonyOS5实现百度地图
在鸿蒙(HarmonyOS5)中集成百度地图,可以通过以下步骤和技术方案实现。结合鸿蒙的分布式能力和百度地图的API,可以构建跨设备的定位、导航和地图展示功能。 1. 鸿蒙环境准备 开发工具:下载安装 De…...