当前位置: 首页 > news >正文

【YOLOv8 代码解读】数据增强代码梳理

1. LetterBox增强

当输入图片的尺寸和模型实际接收的尺寸可能不一致时,通常需要使用LetterBox增强技术。具体步骤是先将图片按比例缩放,将较长的边缩放到设定的尺寸以后,再将较短的边进行填充,最终短边的长度为stride的倍数即可。这种方法可以保留原始图像的纵横比,同时还可以使图像更加适合目标检测算法的输入。
在YOLOv8代码中,ultralytics/data/augment.pyclass LetterBox类别实现了该功能。

import cv2
import numpy as npclass LetterBox:"""Resize image and padding for detection, instance segmentation, pose."""def __init__(self, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, center=True, stride=32):"""Initialize LetterBox object with specific parameters."""self.new_shape = new_shapeself.auto = autoself.scaleFill = scaleFillself.scaleup = scaleupself.stride = strideself.center = center  # Put the image in the middle or top-leftdef __call__(self, labels=None, image=None):"""Return updated labels and image with added border."""if labels is None:labels = {}img = labels.get("img") if image is None else imageshape = img.shape[:2]  # current shape [height, width]new_shape = labels.pop("rect_shape", self.new_shape)if isinstance(new_shape, int):new_shape = (new_shape, new_shape)# Scale ratio (new / old)r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])if not self.scaleup:  # only scale down, do not scale up (for better val mAP)r = min(r, 1.0)# Compute paddingratio = r, r  # width, height ratiosnew_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh paddingif self.auto:  # minimum rectangledw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride)  # wh paddingelif self.scaleFill:  # stretchdw, dh = 0.0, 0.0new_unpad = (new_shape[1], new_shape[0])ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratiosif self.center:dw /= 2  # divide padding into 2 sidesdh /= 2if shape[::-1] != new_unpad:  # resizeimg = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1))left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1))img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))  # add borderif labels.get("ratio_pad"):labels["ratio_pad"] = (labels["ratio_pad"], (left, top))  # for evaluationif len(labels):labels = self._update_labels(labels, ratio, dw, dh)labels["img"] = imglabels["resized_shape"] = new_shapereturn labelselse:return imgnew_shape=(640, 640)
aug = LetterBox(new_shape,center=True)labels=None
img = cv2.imread("./2.png",-1)lettered_img = aug(labels,img)cv2.imshow('v8 letter_box',lettered_img)
cv2.waitKey(0)

center=True
在这里插入图片描述

center=False
在这里插入图片描述

2 Mosaic增强

3 Mixup增强

相关文章:

【YOLOv8 代码解读】数据增强代码梳理

1. LetterBox增强 当输入图片的尺寸和模型实际接收的尺寸可能不一致时,通常需要使用LetterBox增强技术。具体步骤是先将图片按比例缩放,将较长的边缩放到设定的尺寸以后,再将较短的边进行填充,最终短边的长度为stride的倍数即可。…...

安卓调试桥ADB

Logcat 命令行工具 | Android Studio | Android Developers 什么是ADB ADB 全称为 Android Debug Bridge ,是 Android SDK (安卓的开发工具)中的一个工具,起到调试桥的作用,是一个 客户端 - 服务器端程序 。其中 …...

深入理解数据结构第一弹——二叉树(1)——堆

前言: 在前面我们已经学习了数据结构的基础操作:顺序表和链表及其相关内容,今天我们来学一点有些难度的知识——数据结构中的二叉树,今天我们先来学习二叉树中堆的知识,这部分内容还是非常有意思的,下面我们…...

面试题:JVM的垃圾回收

一、GC概念 为了让程序员更专注于代码的实现,而不用过多的考虑内存释放的问题,所以,在Java语言中,有了自动的垃圾回收机制,也就是我们熟悉的GC(Garbage Collection)。 有了垃圾回收机制后,程序员只需要关…...

Java8之接口默认方法

Java8之接口默认方法 一、介绍二、代码1、接口2、实现类3、测试代码4、效果 一、介绍 在Java8中,允许为接口方法提供一个默认的实现。必须用default修饰符标记这样一个方法。默认方法也可以调用其他方法 二、代码 1、接口 public interface PersonService {void…...

发挥ChatGPT潜力:高效撰写学术论文技巧

ChatGPT无限次数:点击直达 发挥ChatGPT潜力:高效撰写学术论文技巧 在当今信息爆炸的时代,如何高效撰写学术论文成为许多研究者关注的焦点。而随着人工智能技术的不断发展,如何利用ChatGPT这一先进的技术工具来提升论文写作效率,成…...

国产暴雨AI服务器X3418开启多元自主可控新篇章

在当前数字化转型的大潮中,算力作为新质生产力的重要动力引擎,对推动经济社会发展起着关键作用。尤其在人工智能领域,随着高性能、安全可控的AI算力需求持续攀升,国产化服务器的研发与应用显得尤为迫切。 作为国内专业的算力基础…...

webpack-dev-server 如何直接用IP打开

当你需要使用IP来访问服务器时,可能需要对 webpack-dev-server 进行相关设置; 当你使用PD虚拟机在Windows上调试时,可能会用到; 一、设置 host 通过webpack.config.js设置 devServer: {host: 0.0.0.0, }通过CLI设置 webpack-dev-s…...

Web框架开发-BBS项目预备知识

一、简介 博客系统(cnblog) https://www.cnblogs.com/ 1.django ORM (object relation mapping 对象关系映射) 表 = 类 对象 = 记录跨表查询 分组查询 annotate() 聚合查询 aggregate(*args, **kwargs) 2.bootstrap3.Ajax (jquery javascript) --- javascript 去写…...

力扣208---实现Trie(前缀树)

题目描述: Trie(发音类似 "try")或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。 请你实现 Trie 类: …...

书生·浦语大模型开源体系(一)论文精读笔记

💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢…...

基于单片机模糊算法温度控制系统设计

**单片机设计介绍, 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机模糊算法温度控制系统设计是一个综合性的项目,结合了单片机技术、传感器技术、模糊控制算法等多个方面。以下是对该设计的概要…...

GESP Python编程四级认证真题 2024年3月

Python 四级 2024 年 03 月 1 单选题(每题 2 分,共 30 分) 第 1 题 小杨的父母最近刚刚给他买了一块华为手表,他说手表上跑的是鸿蒙,这个鸿蒙是?( ) A. 小程序 B. 计时器 C. 操作系统…...

Collection与数据结构 顺序表与ArrayList

1. 线性表 线性表(linear list)是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构,常见的线性表:顺序表、链表、栈、队列… 线性表在逻辑上是线性结构,也就说是连续的一条直线。但是在…...

pytorch | torchvision.transforms.CenterCrop

torchvision.transforms.CenterCrop>从图像中心裁剪图片 transforms.CenterCrop torchvision.transforms.CenterCrop(size) 功能:从图像中心裁剪图片 size: 所需裁剪的图片尺寸 transforms.CenterCrop(196)的效果如下: (也可…...

在Debian 11上安装GCC

GCC(GNU Compiler Collection)是一个功能强大的工具集合,可用于将不同编程语言的源代码编译成可执行文件或库。它支持多种编程语言,包括C、C、Java、Objective-C、Go、Fortran、Ada等。在Debian 11上安装GCC非常简单,以…...

kafka部署之简单密钥

一、说明 centos7.9kafka_2.13-2.7.0.tgzapache-zookeeper-3.8.0-bin.tar.gz官方文档:Apache Kafka 二、kafka配置 2.1、server.properties server.properties修改或增加如下配置 listenersSASL_PLAINTEXT://你的主机ip:9092 super.usersUser:admin authorizer…...

大模型重塑电商,淘宝、百度、京东讲出新故事

配图来自Canva可画 随着AI技术日渐成熟,大模型在各个领域的应用也越来越深入,国内互联网行业也随之进入了大模型竞赛的后半场,开始从“百模大战”转向了实际应用。大模型从通用到细分垂直领域的跨越,也让更多行业迎来了新的商机。…...

用静态工厂方法代替构造器

用静态工厂方法来代替构造方法。 public class Student {private String name;private int age;private String studentId;private Student(String name, int age, String studentId) {this.name name;this.age age;this.studentId studentId;}public static Student creat…...

Discourse 最多允许有几个分类级别

和 DISCUZ 不同,DISCUZ 可以允许分类下面还有分类,再继续分类这种嵌套式分类。 Discourse 最多只允许有 2 个分类。 如果你在已有的分类下再继续分类的话,系统会提示错误: 意思就是子分类不能再分子分类。 Discourse 尽量采取了…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...

解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist

现象: android studio报错: [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决: 不要动CMakeLists.…...

Python学习(8) ----- Python的类与对象

Python 中的类(Class)与对象(Object)是面向对象编程(OOP)的核心。我们可以通过“类是模板,对象是实例”来理解它们的关系。 🧱 一句话理解: 类就像“图纸”,对…...