当前位置: 首页 > news >正文

LLMs之Mistral:Mistral 7B v0.2的简介、安装和使用方法、案例应用之详细攻略

LLMs之Mistral:Mistral 7B v0.2的简介、安装和使用方法、案例应用之详细攻略

导读:Mistral AI首个7B模型发布于2023年9月,在基准测试中超越Llama 2 13B,一下子声名大振。Mistral 7B v0.2对应的指令调优版本Mistral-7B-Instruct-v0.2已在2023年12月开放测试。2024年3月24日,Mistral AI又一次更新了其开源模型Mistral 7B系列,此次开放基础模型后,开发者可以基于此模型进行二次开发和微调。主要有以下几点:

>> Mistral AI在黑客松活动上公布了开源基础模型Mistral 7B v0.2 Base Model。该模型相比之前将上下文提高到32K,调整了一些超参数设置。通过对比发现,更新后的Mistral 7B v0.2的性能有很大提升,已成为同尺寸级别最好的模型之一

>>Mistral AI的长期目标是对标OpenAI,上个月发布了旗舰模型Mistral Large直接对标GPT-4。

>>Mistral Large与微软达成长期合作,微软将持有Mistral AI部分股权,并通过Azure支持Mistral AI模型训练和推理。

>>Mistral AI表示会兼顾开源和商业模式,通过开源来推广,同时提供优化商业版本为研发融资。

目录

Mistral 7B v0.2的简介

Mistral 7B v0.2的安装和使用方法

1、安装

Mistral 7B v0.2的案例应用


Mistral 7B v0.2的简介

2024年3月24日,Mistral 7B v0.2 Base是用于训练Mistral-7B-Instruct-v0.2的原始预训练模型。

官网:Mistral 7B | Mistral AI | Frontier AI in your hands

相关GitHub:GitHub - mistralai-sf24/hackathon

Mistral 7B v0.2的安装和使用方法

1、安装

下载地址:https://models.mistralcdn.com/mistral-7b-v0-2/mistral-7B-v0.2.tar

Mistral 7B v0.2的案例应用

持续更新中……

相关文章:

LLMs之Mistral:Mistral 7B v0.2的简介、安装和使用方法、案例应用之详细攻略

LLMs之Mistral:Mistral 7B v0.2的简介、安装和使用方法、案例应用之详细攻略 导读:Mistral AI首个7B模型发布于2023年9月,在基准测试中超越Llama 2 13B,一下子声名大振。Mistral 7B v0.2对应的指令调优版本Mistral-7B-Instruct-v0…...

深入解析Oracle数据库中的WITH AS(CTE)原理

Oracle数据库中的WITH AS子句(也称为公用表表达式CTE(Common Table Expression))是一种高级查询构造工具,它允许在一条SQL语句的开始部分定义临时的结果集(或称子查询),这个结果集可以被随后的查询主体多次…...

Linux 环境安装 Elasticsearch 8.X

安装前说明 首先确定操作系统,在Linux发行版上执行uname -a查看具体系统。我是Ubuntu系统,可以用直接用apt-get安装,也可以下载tar.gz包手动安装。使用apt-get安装更方便快速,但不同的文件会被安装到不同的目录,不方便…...

Java零基础-集合:函数式接口

哈喽,各位小伙伴们,你们好呀,我是喵手。 今天我要给大家分享一些自己日常学习到的一些知识点,并以文字的形式跟大家一起交流,互相学习,一个人虽可以走的更快,但一群人可以走的更远。 我是一名后…...

Redis Scan指令解析与使用示例

Redis Scan指令解析与使用示例 概念 想要从redis key列表中找到某个key,redis提供了一个简单粗暴的指令keys用来列出满足查询条件的所有key。 keys redis* keys redis*keykey指令非常简单,只要提供一个简单的正则表达式即可,但是有两个明显的…...

Qt+OpenGL入门教程(三)——绘制三角形

通过前两篇文章的学习,我想大家应该有了基本的理解,我们接下来实操一下。 创建Qt OpenGL窗口 QOpenGLWidget QGLWidget是传统QtOpenGL模块的一部分,与其他QGL类一样,应该在新的应用程序中避免使用。相反,从Qt5.4开始…...

springcloud基本使用(搭建eureka服务端)

创建springbootmaven项目 next next finish创建成功 删除项目下所有文件目录&#xff0c;只保留pox.xml文件 父项目中的依赖&#xff1a; springboot依赖&#xff1a; <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-s…...

第十二章:预处理命令

文章目录 第十二章&#xff1a;预处理命令宏定义无参宏定义带参数的宏定义 文件包含处理 第十二章&#xff1a;预处理命令 作用&#xff1a;由编译预处理程序对程序中的特殊命令作出解释&#xff0c;以产生新的源程序对其进行正式编译 C语言与其他语言的重要区别就是可以使用预…...

Game Audio Programming

音频编程时游戏开发中最容易忽略&#xff0c;学习资源又是很少的环节。接下来&#xff0c;你将和我探索人耳的工作机制。 what is sound? 我们可以解释电视机是如何通过眼睛传递视觉信息的&#xff0c;但却往往无法对听觉信息做出类似的解释。 对声音的科学研究被称为声学&…...

高风险IP来自哪里:探讨IP地址来源及其风险性质

在网络安全领域&#xff0c;高风险IP地址是指那些可能涉及恶意活动或网络攻击的IP地址。了解这些高风险IP地址的来源可以帮助网络管理员更好地识别和应对潜在的安全威胁。本文将探讨高风险IP地址的来源及其风险性质&#xff0c;并提供一些有效的应对措施。 风险IP查询&#xf…...

【每日跟读】常用英语500句(300~400)

【每日跟读】常用英语500句 I had to take a shower. 我洗了个澡 Go on in. 赶紧进去吧 Hold up. 等一下 They seem like nice people. 他们看起来像好人 Such a wonderful age. 如此美好的年纪 That’s very impressive. 真厉害 I can see that. 看得出来 You should …...

设计模式(7):装饰器模式

一.装饰器模式职责&#xff1a; 动态的为一个对象增加新的功能&#xff1b;装饰器是一种用于代替继承的技术&#xff0c;无须通过继承增加子类就能扩展对象的新功能&#xff0c;使用对象的关联关系代替继承关系&#xff0c;更加灵活&#xff0c;同时避免类型体系的快速膨胀。 …...

Flink SQL填坑记3:两个kafka数据关联查询

在一个项目中,实时生成的统计数据需要关联另外一张表(并非维表),需要统计的数据表是Kafka数据,而需要关联的表,由于不是维度,不能按照主键查询,所以如果放在MySQL上,将存在严重的性能问题,这个时候我想到用将两张表的数据都生成为Kafka数据,然后进行Join操作。中途发…...

移动平台实时动态多点光源方案:Cluster Light

一、什么是 Cluster Light&#xff0c;它具体如何实现多点光源效果&#xff1f; 对于移动设备&#xff0c;如何支持场景中大量的实时点光源一直以来都是比较棘手的问题&#xff0c;因此对于过去&#xff0c;往往有如下两种常规方案&#xff1a; 静态点光源直接烘焙&#xff0…...

2024年03月CCF-GESP编程能力等级认证C++编程八级真题解析

本文收录于专栏《C++等级认证CCF-GESP真题解析》,专栏总目录:点这里。订阅后可阅读专栏内所有文章。 一、单选题(每题 2 分,共 30 分) 第 1 题 为丰富食堂菜谱,炒菜部进行头脑风暴。肉类有鸡肉、牛肉、羊肉、猪肉4种,切法有肉排、肉块、肉末3种,配菜有圆白菜、油菜、…...

(十一)图像的罗伯特梯度锐化

环境&#xff1a;Windows10专业版 IDEA2021.2.3 jdk11.0.1 OpenCV-460.jar 系列文章&#xff1a; &#xff08;一&#xff09;PythonGDAL实现BSQ&#xff0c;BIP&#xff0c;BIL格式的相互转换 &#xff08;二&#xff09;BSQ,BIL,BIP存储格式的相互转换算法 &#xff08;三…...

实验九 枚举问题(运算模拟)

实验名称&#xff1a;实验九 枚举问题&#xff08;运算模拟&#xff09; 实验目的&#xff1a;熟练掌握一些枚举问题的处理方法。 实验内容&#xff1a; 问题描述&#xff1a;&#xff08;乘积为n个1的数字游戏&#xff09;两位计算机爱好者在进行“积为n个1的数字游戏”&a…...

2024 年 AI 辅助研发趋势:从研发数字化到 AI + 开发工具 2.0,不止于 Copilot

1. 背景介绍 随着人工智能技术的飞速发展&#xff0c;AI在软件开发领域的应用越来越广泛。从最初的代码补全、错误提示&#xff0c;到现在的代码生成、自动化测试&#xff0c;AI正在逐步改变软件开发的模式。2024年&#xff0c;AI辅助研发的趋势已经从研发数字化向AI开发工具2…...

UE5数字孪生系列笔记(三)

C创建Pawn类玩家 创建一个GameMode蓝图用来加载我们自定义的游戏Mode新建一个Pawn的C&#xff0c;MyCharacter类作为玩家&#xff0c;新建一个相机组件与相机臂组件&#xff0c;box组件作为根组件 // Fill out your copyright notice in the Description page of Project Set…...

ASR-LLM-TTS 大模型对话实现案例;语音识别、大模型对话、声音生成

参考:https://blog.csdn.net/weixin_42357472/article/details/136305123(llm+tts) https://blog.csdn.net/weixin_42357472/article/details/136411769 (asr+vad) 这里LLM用的是chatglm;电脑声音播报用的playsound 1、实时语音识别版本 注意:暂时这项目有个缺陷就是tts…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...

Python Einops库:深度学习中的张量操作革命

Einops&#xff08;爱因斯坦操作库&#xff09;就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库&#xff0c;用类似自然语言的表达式替代了晦涩的API调用&#xff0c;彻底改变了深度学习工程…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代&#xff0c;海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构&#xff0c;在处理大规模数据抓取任务时展现出强大的能力。然而&#xff0c;随着业务规模的不断扩大和数据抓取需求的日益复杂&#xff0c;传统…...