(十一)图像的罗伯特梯度锐化
环境:Windows10专业版 + IDEA2021.2.3 + jdk11.0.1 + OpenCV-460.jar
系列文章:
(一)Python+GDAL实现BSQ,BIP,BIL格式的相互转换
(二)BSQ,BIL,BIP存储格式的相互转换算法
(三)单波段图像的伪彩色合成:密度分割(含介绍OpenCV中的Mat类)
(四)图像的%2线性拉伸
(五)图像的标准假彩色合成
(六)图像的直方图均衡化
(七)图像的均值滤波
(八)图像的中值滤波
(九)图像的高斯低通滤波
(十)图像的梯度倒数加权平滑
(十一)图像的罗伯特梯度锐化
(十二)图像的Sobel梯度锐化
(十三)图像的拉普拉斯梯度锐化
目录
一、罗伯特梯度锐化简介
二、算法流程
三、代码实现
四、实验结果
1、读入的图像
2、经过罗伯特梯度处理后的图像
一、罗伯特梯度锐化简介
图像的罗伯特梯度锐化是一种基于梯度的图像处理方法,主要用于增强图像的边缘和细节。
罗伯特梯度锐化方法主要包括以下几个步骤:
1、噪声减少:在进行锐化处理之前,通常需要先对图像进行平滑处理,以减少噪声的影响。这是通过使用高斯滤波器或其他平滑技术来实现的。
2、边缘检测:罗伯特梯度锐化是通过计算图像在水平和垂直方向上的梯度大小和方向来检测边缘的。罗伯特算子利用交叉微分来计算像素点处的梯度强度和方向。
3、梯度计算:罗伯特交叉算子定义为两个模板,一个用于水平方向的边缘检测,另一个用于垂直方向。通过这两个模板的应用,可以计算出图像的梯度图像。
4、图像锐化:根据计算出的梯度信息,可以增强图像的边缘和细节,从而使模糊的图像变得更加清晰。
5、注意信噪比:在进行图像锐化时,需要注意处理的图像必须有较高的信噪比,否则锐化过程可能会放大噪声,影响图像质量。
6、边缘提取:除了锐化,罗伯特算子也常用于图像的边缘提取,这有助于进一步分析图像内容。
罗伯特梯度锐化是一种有效的图像处理技术,它通过增强图像的边缘和细节来提高图像的清晰度,适用于各种需要改善图像质量的应用场景。
二、算法流程
(以单波段灰度图像为例)
1、利用OpenCV读入图像,将像素存储在数组里
2、用方向1模板计算后取绝对值再加上方向2模板计算后取绝对值
|
|
|

![]()
3、将经过罗伯特梯度处理后的像素值存入数组合成图像并存储
三、代码实现
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.imgcodecs.Imgcodecs;/*** @Author: HNUST_jue_chen* @Date: 2022/11/03/ 21:23* @Attention: 转载, 引用请注明出处*/public class RobertGradient {//加载本地动态链接库static {System.loadLibrary(Core.NATIVE_LIBRARY_NAME);}//罗伯特梯度锐化public Mat robertSharping(String path) {//使用Mat类存储图像信息Mat mat = Imgcodecs.imread(path);//图像的大小int rows = mat.rows();int cols = mat.cols();//获得原图像像素数组int[][] mat_arr = new int[rows][cols];for (int i = 0; i < rows; i++) {for (int j = 0; j < cols; j++) {mat_arr[i][j] = (int) mat.get(i, j)[0];}}//用2×2窗口进行滤波int[][] mat_arr_robertSharp = new int[rows][cols];for (int i = 0; i < rows; i++) {for (int j = 0; j < cols; j++) {//处理非最后一行和非最后一列的像素if (i != rows - 1 && j != cols - 1) {//中心像素的2×2窗口int[][] temp = new int[2][2];temp[0][0] = mat_arr[i][j];temp[0][1] = mat_arr[i][j + 1];temp[1][0] = mat_arr[i + 1][j];temp[1][1] = mat_arr[i + 1][j + 1];mat_arr_robertSharp[i][j] = Math.abs(temp[0][0] - temp[1][1])+ Math.abs(temp[0][1] - temp[1][0]);} else { //处理最后一行和最后一列的像素mat_arr_robertSharp[i][j] = mat_arr[i][j];}}}//合成图像Mat mat_robertSharp = new Mat(rows, cols, CvType.CV_32SC1);//将像素放入图像for (int i = 0; i < rows; i++) {//一次放入一行像素值mat_robertSharp.put(i, 0, mat_arr_robertSharp[i]);}return mat_robertSharp;}public static void main(String[] args) {RobertGradient rg = new RobertGradient();Mat mat = rg.robertSharping("D:\\Project\\IDEA_Project\\RS01\\src\\rs01\\img\\2_gray.png");//将经过罗伯特梯度锐化后的图像写入文件Imgcodecs.imwrite("D:\\Project\\IDEA_Project\\RS01\\src\\rs01\\img\\2_gray_rg.png", mat);}
}
四、实验结果
1、读入的图像

2、经过罗伯特梯度处理后的图像

相关文章:
(十一)图像的罗伯特梯度锐化
环境:Windows10专业版 IDEA2021.2.3 jdk11.0.1 OpenCV-460.jar 系列文章: (一)PythonGDAL实现BSQ,BIP,BIL格式的相互转换 (二)BSQ,BIL,BIP存储格式的相互转换算法 (三…...
实验九 枚举问题(运算模拟)
实验名称:实验九 枚举问题(运算模拟) 实验目的:熟练掌握一些枚举问题的处理方法。 实验内容: 问题描述:(乘积为n个1的数字游戏)两位计算机爱好者在进行“积为n个1的数字游戏”&a…...
2024 年 AI 辅助研发趋势:从研发数字化到 AI + 开发工具 2.0,不止于 Copilot
1. 背景介绍 随着人工智能技术的飞速发展,AI在软件开发领域的应用越来越广泛。从最初的代码补全、错误提示,到现在的代码生成、自动化测试,AI正在逐步改变软件开发的模式。2024年,AI辅助研发的趋势已经从研发数字化向AI开发工具2…...
UE5数字孪生系列笔记(三)
C创建Pawn类玩家 创建一个GameMode蓝图用来加载我们自定义的游戏Mode新建一个Pawn的C,MyCharacter类作为玩家,新建一个相机组件与相机臂组件,box组件作为根组件 // Fill out your copyright notice in the Description page of Project Set…...
ASR-LLM-TTS 大模型对话实现案例;语音识别、大模型对话、声音生成
参考:https://blog.csdn.net/weixin_42357472/article/details/136305123(llm+tts) https://blog.csdn.net/weixin_42357472/article/details/136411769 (asr+vad) 这里LLM用的是chatglm;电脑声音播报用的playsound 1、实时语音识别版本 注意:暂时这项目有个缺陷就是tts…...
主干网络篇 | YOLOv8更换主干网络之EfficientNet
前言:Hello大家好,我是小哥谈。EfficientNet是一种高效的卷积神经网络架构,由Mingxing Tan和Quoc V. Le在2019年提出,其设计思想是在不增加计算复杂度的情况下提高模型的准确性。它引入了一个称为"复合系数"的概念,该系数用于同时缩放网络的深度、宽度和分辨率。…...
Web开发-Django学习笔记
客户端如何获取服务端的数据信息? 通常 是 HTTP网络协议,通过网络传输数据信息。 客户端通过HTTP协议发送请求信息给服务端,并从服务端接收响应信息。 Web 前端开发: (HTML、CSS、JS)文件部署在后端服务…...
关于深度学习的 PyTorch 项目如何上手分析?从什么地方切入?
文章目录 PyTorch 项目分析1.背景2.分析流程 PyTorch 项目分析 1.背景 当我们拿到一个 PyTorch 的深度学习项目时,应该怎么入手?怎么去查看代码? 2.分析流程 首先阅读对应项目的 README.md 文件。通过阅读 README.md ,一般可以…...
JavaEE企业开发新技术4
2.16 模拟Spring IOC容器功能-1 2.17 模拟Spring IOC容器功能-2 什么是IOC? 控制反转,把对象创建和对象之间的调用过程交给Spring框架进行管理使用IOC的目的:为了耦合度降低 解释: 模仿 IOC容器的功能,我们利用 Map…...
CSS使用JS变量
1. CSS变量 CSS 变量(也称为自定义属性)允许我们在 CSS 中定义可重复使用的值,并将其应用于不同的选择器。为了创建一个 CSS 变量,我们需要使用 -- 前缀,然后可以像常规属性一样使用它。 :root {--primary-color: bl…...
拆分巨石:将MVPS和MVAS应用于遗留应用程序——可持续架构(六)
前言 MVP 和 MVA 的概念不仅适用于新应用程序;它们提供了一种新颖的方式来审视对遗留系统的范围变更,以防止过快地承担过多的变化 - 参见图1。MVA 可以帮助组织评估和更新其技术标准,通过展示新技术如何真正对支持 MVP 至关重要。创建 MVA 可…...
Linux renice命令教程:如何优雅地调整进程优先级(附案例详解和注意事项)
Linux renice命令介绍 renice命令在Linux中用于修改已经运行的进程的优先级。这个命令允许你改变一个已经运行的进程的调度优先级。如果我们给一个进程设置了更高的优先级,那么内核将为该进程分配更多的CPU时间。 Linux renice命令适用的Linux版本 renice命令在所…...
Gitea 的详细介绍
什么是 Gitea? Gitea 是一个开源、轻量级的自托管 Git 服务,它允许用户搭建类似于 GitHub 或 GitLab 的代码托管平台。由于采用 Go 语言开发,Gitea 具有高效的性能和跨平台特性,适合个人开发者或小团队使用。 Gitea 的特点 轻量…...
Kotlin object
object 的三种用法 Kotlin 的 object 关键字有三种用法: 对象声明 ,一般用来实现单例伴生对象 ,类似 Java 的 static 关键字,也可以用于工厂方法模式对象表达式 ,一般用来代替 Java 的匿名内部类 对象声明 object 的语义是这样的: 定义一个类并创建一个实例 。不管是对象…...
【Redis】数据类型、事务执行、内存淘汰策略
目录 数据类型 Redis事务执行步骤 步骤: redis内存淘汰策略 设置内存淘汰策略 1.设置配置文件 2.通过命令设置 数据类型 官网解释 Understand Redis data types | Redis 首先,Redis 的所有键都是字符串,常用的数据类型有 5 种:Strin…...
Python Flask Web框架初步入门
前言 flask基础 搭建flask服务器 定义html 使用templates模板定义页面的html html页面编写 render_template传参变量 定义图片 创建static目录,存入图片 html编写 flask入门 网站多域名 网站之间超链接跳转 入门案例 将centos的rpm包下载链接集成到自…...
【设计模式】工厂方法模式详解
在java中,万物皆对象,这些对象都需要创建,如果创建的时候直接new该对象,就会对该对象耦合严重,假如我们要更换对象,所有new对象的地方都需要修改一遍,这显然违背了软件设计的开闭原则。如果我们…...
独立游戏《星尘异变》UE5 C++程序开发日志3——UEC++特供的数据类型
本篇日志将介绍FString,FText、FName的用法和相互转换,以及容器TMap,TArray的增删查改 一、字符串相关数据类型:FString、FText、FName FString是最接近std::string的类型,字符串本身可以看做一个存储char型的动态数…...
递归方法的理解
递归方法调用 :方法自己调用自己的现象就称为递归。 递归的分类 : 直接递归、间接递归。 直接递归:方法自身调用自己 public void methodA (){ methodA (); } 间接递归:可以理解为A()方法调用B()方法,B()方法调用C()方法&am…...
css之flex布局文本不换行不显示省略号的解决方法
文章目录 一、单行长文本显示省略号二、flex布局下的处理技巧 一、单行长文本显示省略号 先讲讲常规情况下长文本不跨行显示省略号的代码: overflow: hidden; //不允许内容超出盒子 white-space: nowrap; //不允许文本跨行 text-overflow: ellipsis; //文本超…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...


