当前位置: 首页 > news >正文

volatile使用场景总结

volatile关键字在Java中用于确保变量的可见性以及防止指令重排序,特别是在没有使用锁定机制时对变量进行读写的多线程环境中。以下是需要使用volatile修饰的一些场景:

  1. 确保变量的可见性
    当一个变量被多个线程访问,且至少有一个线程在写(修改)这个变量时,应该将这个变量声明为volatile。这确保了一个线程对这个变量的修改对其他线程立即可见。

示例:

public class VisibilityTask implements Runnable {private volatile boolean running = true;public void run() {while (running) {// do something}}public void stopRunning() {this.running = false;}
}

在这个例子中,running变量被声明为volatile,确保了线程中的循环可以正确地看到stopRunning()方法对running变量所做的修改。

  1. 防止指令重排序
    volatile变量的另一个重要作用是防止指令重排序。在没有使用volatile的情况下,编译器和处理器可能会对操作进行重排序以优化性能,但这可能会破坏程序的正确性。

示例:

public class Singleton {private static volatile Singleton instance;public static Singleton getInstance() {if (instance == null) {synchronized (Singleton.class) {if (instance == null) {instance = new Singleton(); // volatile防止这里的指令重排序}}}return instance;}
}

在这个双重检查锁定(Double-Checked Locking)实现单例模式的例子中,volatile防止了new Singleton()这个操作的指令重排序。如果没有volatile,instance的赋值操作可能被重排序到构造函数内部操作的前面,导致另一个线程可能会看到一个未完全构造的对象。

  1. 用于CAS操作的变量
    在进行比较并交换(CAS)操作时,通常需要确保变量的改动对所有线程可见,这样CAS操作才能正确地比较变量的当前值是否为预期值。在Java中,AtomicInteger等原子类内部对其操作的变量使用了volatile修饰。

示例:

Java的AtomicInteger类内部使用了volatile修饰其值变量,使得每次更新都能保证对所有线程的可见性,从而使CAS操作能够正确执行。

总结
总的来说,volatile修饰符主要用于保证变量修改的可见性和防止指令重排序,特别适用于变量的读写操作是无锁操作(如简单的标志位控制)或进行CAS操作的场景。在使用volatile时,需要理解其用途和限制,确保多线程程序的正确性和性能。

相关文章:

volatile使用场景总结

volatile关键字在Java中用于确保变量的可见性以及防止指令重排序,特别是在没有使用锁定机制时对变量进行读写的多线程环境中。以下是需要使用volatile修饰的一些场景: 确保变量的可见性 当一个变量被多个线程访问,且至少有一个线程在写&…...

AcWing 1413. 矩形牛棚(每日一题)

原题链接:1413. 矩形牛棚 - AcWing题库 作为一个资本家,农夫约翰希望通过购买更多的奶牛来扩大他的牛奶业务。 因此,他需要找地方建立一个新的牛棚。 约翰购买了一大块土地,这个土地可以看作是一个 R 行(编号 1∼R&…...

macOS Sonoma 14.4.1 (23E224) 正式版发布,ISO、IPSW、PKG 下载

macOS Sonoma 14.4.1 (23E224) 正式版发布,ISO、IPSW、PKG 下载 2024 年 3 月 26 日凌晨,macOS Sonoma 14.4.1 更新修复了一个可能导致连接到外部显示器的 USB 集线器无法被识别的问题。它还解决了可能导致 Java 应用程序意外退出的问题,并修…...

WPF使用外部字体,思源黑体,为例子

1.在工程中新建文件夹&#xff0c;命名为“Font"。 2.将下载好的字体文件复制到Font文件夹。 3.在工程中&#xff0c;加入静态资源 <Window.Resources><FontFamily x:Key"SYBold">/AnalyzeImage;Component/Font/#思源黑体 CN Bold</FontFamily…...

9、jenkins微服务持续集成(一)

文章目录 一、流程说明二、源码概述三、本地部署3.1 SpringCloud微服务部署本地运行微服务本地部署微服务3.2 静态Web前端部署四、Docker快速入门一、流程说明 Jenkins+Docker+SpringCloud持续集成流程说明 大致流程说明: 开发人员每天把代码提交到Gitlab代码仓库Jenkins从G…...

VOC(客户之声)赋能智能家居:打造个性化、交互式的未来生活体验

随着科技的飞速发展&#xff0c;智能家居已成为现代家庭不可或缺的一部分。然而&#xff0c;如何让智能家居更好地满足用户需求&#xff0c;提供更贴心、更智能的服务&#xff0c;一直是行业关注的焦点。在这个背景下&#xff0c;VOC&#xff08;客户之声&#xff09;作为一种用…...

时序预测 | Matlab实现GWO-BP灰狼算法优化BP神经网络时间序列预测

时序预测 | Matlab实现GWO-BP灰狼算法优化BP神经网络时间序列预测 目录 时序预测 | Matlab实现GWO-BP灰狼算法优化BP神经网络时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现GWO-BP灰狼算法优化BP神经网络时间序列预测&#xff08;完整源码和数据…...

node.js学习(2)

版权声明 以下文章为尚硅谷PDF资料&#xff0c;B站视频链接&#xff1a;【尚硅谷Node.js零基础视频教程&#xff0c;nodejs新手到高手】仅供个人学习交流使用。如涉及侵权问题&#xff0c;请立即与本人联系&#xff0c;本人将积极配合删除相关内容。感谢理解和支持&#xff0c;…...

【pytest】测试数据存储在 Excel 或 TXT 文件中,如何参数化

如果测试数据存储在 Excel 或 TXT 文件中&#xff0c;你可以使用外部库来读取这些数据&#xff0c;并将其转化为参数化测试所需的格式。下面我将分别展示如何从这两种文件中读取数据&#xff0c;并用于参数化测试。 从 Excel 文件中读取测试数据 你可以使用 pandas 库来读取 …...

ubuntu22.04@Jetson Orin Nano安装配置VNC服务端

ubuntu22.04Jetson Orin Nano安装&配置VNC服务端 1. 源由2. 环境3. VNC安装Step 1: update and install xserver-xorg-video-dummyStep 2: Create config for dummy virtual displayStep3: Add the following contents in xorg.conf.dummyStep 4: Update /etc/X11/xorg.con…...

面向对象特征二:继承

继承的概述 生活中的继承 财产继承&#xff1a; 绿化&#xff1a;前人栽树&#xff0c;后人乘凉 “绿水青山&#xff0c;就是金山银山” 样貌&#xff1a; 继承之外&#xff0c;是不是还可以"进化"&#xff1a; 继承有延续&#xff08;下一代延续上一代的基因、财…...

宝塔面板CentOS Stream 8 x86 下如何安装openlitespeed

宝塔自带的软件商店里如果没办法安装&#xff0c;那么我们可以通过指令来手动安装&#xff1a; 第一步&#xff1a; yum install epel-release Package epel-release-8-19.el8.noarch is already installed. Dependencies resolved. Nothing to do. Complete! 第二步&#…...

LeetCode 2952.需要添加的硬币的最小数量:贪心(排序)

【LetMeFly】2952.需要添加的硬币的最小数量&#xff1a;贪心&#xff08;排序&#xff09; 力扣题目链接&#xff1a;https://leetcode.cn/problems/minimum-number-of-coins-to-be-added/ 给你一个下标从 0 开始的整数数组 coins&#xff0c;表示可用的硬币的面值&#xff…...

基于SpringBoot + Vue实现的在线装修管理系统设计与实现+毕业论文

介绍 系统包含用户、装修队、管理员三个角色 管理员&#xff1a; 管理员管理&#xff1a;管理其他管理员的账号和权限&#xff0c;确保系统管理的层次化和安全性。 装修队管理&#xff1a;审核装修队的资质&#xff0c;管理装修队的人员信息&#xff0c;监控工程进度&#xff…...

阿里云安全产品简介,Web应用防火墙与云防火墙产品各自作用介绍

在阿里云的安全类云产品中&#xff0c;Web应用防火墙与云防火墙是用户比较关注的安全类云产品&#xff0c;二则在作用上并不是完全一样的&#xff0c;Web应用防火墙是一款网站Web应用安全的防护产品&#xff0c;云防火墙是一款公共云环境下的SaaS化防火墙&#xff0c;本文为大家…...

作业 二维数组-定位问题

图形相似度 描述 给出两幅相同大小的黑白图像&#xff08;用0-1矩阵&#xff09;表示&#xff0c;求它们的相似度。 说明&#xff1a;若两幅图像在相同位置上的像素点颜色相同&#xff0c;则称它们在该位置具有相同的像素点。 两幅图像的相似度定义为相同像素点数占总像素点数…...

通过Jmeter准备压测数据-mysql示例

1、新建线程组 总共30万条数据 2、创建jdbc链接 创建jdbc连接配置 配置mysql连接 需要在jmeter安装的路径\apache-jmeter-5.6.3\lib\ext 目录下添加mysql 驱动 3、创建jdbc请求 jdbc链接名称需要与上一步中的保持一致&#xff0c;同时添加insert语句 例如 INSERT INTO test…...

如何系统的自学python?

系统地自学Python是一个循序渐进的过程&#xff0c;以下是一份详细的指南&#xff0c;帮助你从零开始逐步掌握这门语言&#xff1a; 1、了解Python及其应用场景&#xff1a; 阅读关于Python的简介&#xff0c;理解它为何流行&#xff0c;以及在哪些领域&#xff08;如Web开发…...

记录一个写自定义Flume拦截器遇到的错误

先说结论&#xff1a; 【结论1】配置文件中包名要写正确 vim flume1.conf ... a1.sources.r1.interceptors.i1.type com.atguigu.flume.interceptor.MyInterceptor2$MyBuilder ... 标红的是包名&#xff0c;表黄的是类名&#xff0c;标蓝的是自己加的内部类名。这三个都…...

Codeforces Round 934 (Div. 2) D. Non-Palindromic Substring

题目 思路&#xff1a; #include <bits/stdc.h> using namespace std; #define int long long #define pb push_back #define fi first #define se second #define lson p << 1 #define rson p << 1 | 1 const int maxn 1e6 5, inf 1e9, maxm 4e4 5; co…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...