当前位置: 首页 > news >正文

yolov8直接调用zed相机实现三维测距(python)

yolov8直接调用zed相机实现三维测距(python)

  • 1. 相关配置
  • 2. 版本一
    • 2.1 相关代码
    • 2.2 实验结果
  • 3. 版本二
    • 3.1 相关代码
    • 3.2 实验结果

相关链接
此项目直接调用zed相机实现三维测距,无需标定,相关内容如下:
1.yolov5直接调用zed相机实现三维测距(python)
2. yolov4直接调用zed相机实现三维测距
3. Windows+YOLOV8环境配置
4.具体实现效果已在哔哩哔哩发布,点击此链接跳转

本篇博文工程源码下载(麻烦github给个星星)
下载链接:https://github.com/up-up-up-up/zed-yolov8

附:Zed调用YOLOv7测距也已经实现,但是3060笔记本6G显存带不动,在大现存服务器上可以运行,可能是由于YOLOv7网络结构导致的,由于不具备普适性,就不再写相关文章了,有需要的可以仿照这个代码去改写

1. 相关配置

python==3.7
Windows-pycharm
zed api 具体配置见 (zed api 配置步骤)

由于我电脑之前python版本为3.7,yolov8要求python最低为3.8,所以本次实验直接在虚拟环境里进行,未配置gpu,可能看着卡卡的,有需要的可以配置一下,原理是一样的

2. 版本一

2.1 相关代码

主代码 zed-yolo.py,具体放置在yolov8主目录下,盒子形式展现,可实现测距+跟踪

#!/usr/bin/env python3import sys
import numpy as npimport argparse
import torch
import cv2
import pyzed.sl as sl
from ultralytics import YOLOfrom threading import Lock, Thread
from time import sleepimport ogl_viewer.viewer as gl
import cv_viewer.tracking_viewer as cv_viewerlock = Lock()
run_signal = False
exit_signal = Falsedef xywh2abcd(xywh, im_shape):output = np.zeros((4, 2))# Center / Width / Height -> BBox corners coordinatesx_min = (xywh[0] - 0.5*xywh[2]) #* im_shape[1]x_max = (xywh[0] + 0.5*xywh[2]) #* im_shape[1]y_min = (xywh[1] - 0.5*xywh[3]) #* im_shape[0]y_max = (xywh[1] + 0.5*xywh[3]) #* im_shape[0]# A ------ B# | Object |# D ------ Coutput[0][0] = x_minoutput[0][1] = y_minoutput[1][0] = x_maxoutput[1][1] = y_minoutput[2][0] = x_maxoutput[2][1] = y_maxoutput[3][0] = x_minoutput[3][1] = y_maxreturn outputdef detections_to_custom_box(detections, im0):output = []for i, det in enumerate(detections):xywh = det.xywh[0]# Creating ingestable objects for the ZED SDKobj = sl.CustomBoxObjectData()obj.bounding_box_2d = xywh2abcd(xywh, im0.shape)obj.label = det.clsobj.probability = det.confobj.is_grounded = Falseoutput.append(obj)return outputdef torch_thread(weights, img_size, conf_thres=0.2, iou_thres=0.45):global image_net, exit_signal, run_signal, detectionsprint("Intializing Network...")model = YOLO(weights)while not exit_signal:if run_signal:lock.acquire()img = cv2.cvtColor(image_net, cv2.COLOR_BGRA2RGB)# https://docs.ultralytics.com/modes/predict/#video-suffixesdet = model.predict(img, save=False, imgsz=img_size, conf=conf_thres, iou=iou_thres)[0].cpu().numpy().boxes# ZED CustomBox format (with inverse letterboxing tf applied)detections = detections_to_custom_box(det, image_net)lock.release()run_signal = Falsesleep(0.01)def main():global image_net, exit_signal, run_signal, detectionscapture_thread = Thread(target=torch_thread, kwargs={'weights': opt.weights, 'img_size': opt.img_size, "conf_thres": opt.conf_thres})capture_thread.start()print("Initializing Camera...")zed = sl.Camera()input_type = sl.InputType()if opt.svo is not None:input_type.set_from_svo_file(opt.svo)# Create a InitParameters object and set configuration parametersinit_params = sl.InitParameters(input_t=input_type, svo_real_time_mode=True)init_params.coordinate_units = sl.UNIT.METERinit_params.depth_mode = sl.DEPTH_MODE.ULTRA  # QUALITYinit_params.coordinate_system = sl.COORDINATE_SYSTEM.RIGHT_HANDED_Y_UPinit_params.depth_maximum_distance = 50runtime_params = sl.RuntimeParameters()status = zed.open(init_params)if status != sl.ERROR_CODE.SUCCESS:print(repr(status))exit()image_left_tmp = sl.Mat()print("Initialized Camera")positional_tracking_parameters = sl.PositionalTrackingParameters()# If the camera is static, uncomment the following line to have better performances and boxes sticked to the ground.# positional_tracking_parameters.set_as_static = Truezed.enable_positional_tracking(positional_tracking_parameters)obj_param = sl.ObjectDetectionParameters()
#    obj_param.detection_model = sl.OBJECT_DETECTION_MODEL.CUSTOM_BOX_OBJECTSobj_param.enable_tracking = Truezed.enable_object_detection(obj_param)objects = sl.Objects()obj_runtime_param = sl.ObjectDetectionRuntimeParameters()# Displaycamera_infos = zed.get_camera_information()camera_res = camera_infos.camera_resolution# Create OpenGL viewerviewer = gl.GLViewer()point_cloud_res = sl.Resolution(min(camera_res.width, 720), min(camera_res.height, 404))point_cloud_render = sl.Mat()viewer.init(camera_infos.camera_model, point_cloud_res, obj_param.enable_tracking)point_cloud = sl.Mat(point_cloud_res.width, point_cloud_res.height, sl.MAT_TYPE.F32_C4, sl.MEM.CPU)image_left = sl.Mat()# Utilities for 2D displaydisplay_resolution = sl.Resolution(min(camera_res.width, 1280), min(camera_res.height, 720))image_scale = [display_resolution.width / camera_res.width, display_resolution.height / camera_res.height]image_left_ocv = np.full((display_resolution.height, display_resolution.width, 4), [245, 239, 239, 255], np.uint8)# # Utilities for tracks view# camera_config = camera_infos.camera_configuration# tracks_resolution = sl.Resolution(400, display_resolution.height)# track_view_generator = cv_viewer.TrackingViewer(tracks_resolution, camera_config.fps, init_params.depth_maximum_distance)# track_view_generator.set_camera_calibration(camera_config.calibration_parameters)# image_track_ocv = np.zeros((tracks_resolution.height, tracks_resolution.width, 4), np.uint8)# Camera posecam_w_pose = sl.Pose()while viewer.is_available() and not exit_signal:if zed.grab(runtime_params) == sl.ERROR_CODE.SUCCESS:# -- Get the imagelock.acquire()zed.retrieve_image(image_left_tmp, sl.VIEW.LEFT)image_net = image_left_tmp.get_data()lock.release()run_signal = True# -- Detection running on the other threadwhile run_signal:sleep(0.001)# Wait for detectionslock.acquire()# -- Ingest detectionszed.ingest_custom_box_objects(detections)lock.release()zed.retrieve_objects(objects, obj_runtime_param)# -- Display# Retrieve display datazed.retrieve_measure(point_cloud, sl.MEASURE.XYZRGBA, sl.MEM.CPU, point_cloud_res)point_cloud.copy_to(point_cloud_render)zed.retrieve_image(image_left, sl.VIEW.LEFT, sl.MEM.CPU, display_resolution)zed.get_position(cam_w_pose, sl.REFERENCE_FRAME.WORLD)# 3D renderingviewer.updateData(point_cloud_render, objects)# 2D renderingnp.copyto(image_left_ocv, image_left.get_data())cv_viewer.render_2D(image_left_ocv, image_scale, objects, obj_param.enable_tracking)global_image = image_left_ocv# global_image = cv2.hconcat([image_left_ocv, image_track_ocv])# # Tracking view# track_view_generator.generate_view(objects, cam_w_pose, image_track_ocv, objects.is_tracked)cv2.imshow("ZED | 2D View and Birds View", global_image)key = cv2.waitKey(10)if key == 27:exit_signal = Trueelse:exit_signal = Trueviewer.exit()exit_signal = Truezed.close()if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--weights', type=str, default='yolov8n.pt', help='model.pt path(s)')parser.add_argument('--svo', type=str, default=None, help='optional svo file')parser.add_argument('--img_size', type=int, default=416, help='inference size (pixels)')parser.add_argument('--conf_thres', type=float, default=0.4, help='object confidence threshold')opt = parser.parse_args()with torch.no_grad():main()

2.2 实验结果

测距图(感觉挺精准的)
在这里插入图片描述
视频展示:

Zed相机+YOLOv8目标检测跟踪

3. 版本二

3.1 相关代码

主代码 zed.py,具体放置在yolov8主目录下,可实现测距+跟踪+分割

#!/usr/bin/env python3
import math
import sys
import numpy as np
from PIL import Image
import argparse
import torch
import cv2
import pyzed.sl as sl
from ultralytics.utils.plotting import Annotator, colors, save_one_box
from ultralytics import YOLO
from threading import Lock, Thread
from time import sleepimport ogl_viewer.viewer as gl
import cv_viewer.tracking_viewer as cv_viewerzed = sl.Camera()# Create a InitParameters object and set configuration parameters
init_params = sl.InitParameters()
init_params.camera_resolution = sl.RESOLUTION.HD720
init_params.coordinate_units = sl.UNIT.METER
init_params.depth_mode = sl.DEPTH_MODE.ULTRA  # QUALITY
init_params.coordinate_system = sl.COORDINATE_SYSTEM.RIGHT_HANDED_Y_UP
init_params.depth_maximum_distance = 20  # 设置最远距离runtime_params = sl.RuntimeParameters()
status = zed.open(init_params)if status != sl.ERROR_CODE.SUCCESS:print(repr(status))exit()image_left_tmp = sl.Mat()
print("Initialized Camera")
positional_tracking_parameters = sl.PositionalTrackingParameters()
zed.enable_positional_tracking(positional_tracking_parameters)obj_param = sl.ObjectDetectionParameters()
obj_param.detection_model = sl.DETECTION_MODEL.CUSTOM_BOX_OBJECTS
obj_param.enable_tracking = True
zed.enable_object_detection(obj_param)
objects = sl.Objects()
obj_runtime_param = sl.ObjectDetectionRuntimeParameters()point_cloud_render = sl.Mat()
point_cloud = sl.Mat()
image_left = sl.Mat()
depth = sl.Mat()
# Utilities for 2D display
if __name__ == '__main__':model = YOLO("./yolov8n.pt")while True:if zed.grab(runtime_params) == sl.ERROR_CODE.SUCCESS:# -- Get the imagezed.retrieve_image(image_left_tmp, sl.VIEW.LEFT)image_net = image_left_tmp.get_data()zed.retrieve_measure(depth, sl.MEASURE.DEPTH)zed.retrieve_measure(point_cloud, sl.MEASURE.XYZRGBA)img = cv2.cvtColor(image_net, cv2.COLOR_BGRA2BGR)result = model.predict(img, conf=0.5)annotated_frame = result[0].plot()boxes = result[0].boxes.xywhfor i, box in enumerate(boxes):x_center, y_center, width, height = box.tolist()point_cloud_value = point_cloud.get_value(x_center, y_center)[1]point_cloud_value = point_cloud_value * -1000.00if point_cloud_value[2] > 0.00:try:point_cloud_value[0] = round(point_cloud_value[0])point_cloud_value[1] = round(point_cloud_value[1])point_cloud_value[2] = round(point_cloud_value[2])distance = math.sqrt(point_cloud_value[0] * point_cloud_value[0] + point_cloud_value[1] *point_cloud_value[1] +point_cloud_value[2] * point_cloud_value[2])print(distance)dis = []dis.append(distance)text = "dis:%0.2fm" % distancecv2.putText(annotated_frame, text, (int(x_center), int(y_center)),cv2.FONT_ITALIC, 1.0, (0, 0, 255), 2)except:passcv2.imshow('00', annotated_frame)key = cv2.waitKey(1)if key == 'q':breakzed.retrieve_objects(objects, obj_runtime_param)zed.retrieve_image(image_left, sl.VIEW.LEFT)zed.close()

3.2 实验结果

可实现测距、跟踪和分割功能,这个代码没有加多线程,速度够用懒得写了,对速率要求高的可以自己写一下,实现不同功能仅需修改以下代码,具体见 此篇文章

 model = YOLO("./yolov8n.pt")img = cv2.cvtColor(image_net, cv2.COLOR_BGRA2BGR)result = model.predict(img, conf=0.5)

测距功能
在这里插入图片描述
跟踪功能
在这里插入图片描述

分割功能
在这里插入图片描述
视频展示

相关文章:

yolov8直接调用zed相机实现三维测距(python)

yolov8直接调用zed相机实现三维测距(python) 1. 相关配置2. 版本一2.1 相关代码2.2 实验结果 3. 版本二3.1 相关代码3.2 实验结果 相关链接 此项目直接调用zed相机实现三维测距,无需标定,相关内容如下: 1.yolov5直接调…...

element跑马灯/轮播图,第一页隐藏左边按钮,最后一页隐藏右边按钮(vue 开箱即用)

图示&#xff1a; 第一步&#xff1a; <el-carousel :class"changeIndex0?leftBtnNone:changeIndeximgDataList.length-1? rightBtnNone:" height"546px" :autoplay"false" change"changeNext"><el-carousel-item v-for…...

下载及安装PHP,composer,phpstudy,thinkPHP6.0框架

文章目录 目录 文章目录 前言 一、下载PHP 二、下载composer 三、下载PHPstudy 四、下载think PHP 1.下载 2.多应用开发 前言 thinkPHP是一款开源的PHP框架&#xff0c;它是基于MVC&#xff08;Model-View-Controller&#xff09;设计模式构建的。thinkPHP提供了丰富的…...

volatile使用场景总结

volatile关键字在Java中用于确保变量的可见性以及防止指令重排序&#xff0c;特别是在没有使用锁定机制时对变量进行读写的多线程环境中。以下是需要使用volatile修饰的一些场景&#xff1a; 确保变量的可见性 当一个变量被多个线程访问&#xff0c;且至少有一个线程在写&…...

AcWing 1413. 矩形牛棚(每日一题)

原题链接&#xff1a;1413. 矩形牛棚 - AcWing题库 作为一个资本家&#xff0c;农夫约翰希望通过购买更多的奶牛来扩大他的牛奶业务。 因此&#xff0c;他需要找地方建立一个新的牛棚。 约翰购买了一大块土地&#xff0c;这个土地可以看作是一个 R 行&#xff08;编号 1∼R&…...

macOS Sonoma 14.4.1 (23E224) 正式版发布,ISO、IPSW、PKG 下载

macOS Sonoma 14.4.1 (23E224) 正式版发布&#xff0c;ISO、IPSW、PKG 下载 2024 年 3 月 26 日凌晨&#xff0c;macOS Sonoma 14.4.1 更新修复了一个可能导致连接到外部显示器的 USB 集线器无法被识别的问题。它还解决了可能导致 Java 应用程序意外退出的问题&#xff0c;并修…...

WPF使用外部字体,思源黑体,为例子

1.在工程中新建文件夹&#xff0c;命名为“Font"。 2.将下载好的字体文件复制到Font文件夹。 3.在工程中&#xff0c;加入静态资源 <Window.Resources><FontFamily x:Key"SYBold">/AnalyzeImage;Component/Font/#思源黑体 CN Bold</FontFamily…...

9、jenkins微服务持续集成(一)

文章目录 一、流程说明二、源码概述三、本地部署3.1 SpringCloud微服务部署本地运行微服务本地部署微服务3.2 静态Web前端部署四、Docker快速入门一、流程说明 Jenkins+Docker+SpringCloud持续集成流程说明 大致流程说明: 开发人员每天把代码提交到Gitlab代码仓库Jenkins从G…...

VOC(客户之声)赋能智能家居:打造个性化、交互式的未来生活体验

随着科技的飞速发展&#xff0c;智能家居已成为现代家庭不可或缺的一部分。然而&#xff0c;如何让智能家居更好地满足用户需求&#xff0c;提供更贴心、更智能的服务&#xff0c;一直是行业关注的焦点。在这个背景下&#xff0c;VOC&#xff08;客户之声&#xff09;作为一种用…...

时序预测 | Matlab实现GWO-BP灰狼算法优化BP神经网络时间序列预测

时序预测 | Matlab实现GWO-BP灰狼算法优化BP神经网络时间序列预测 目录 时序预测 | Matlab实现GWO-BP灰狼算法优化BP神经网络时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现GWO-BP灰狼算法优化BP神经网络时间序列预测&#xff08;完整源码和数据…...

node.js学习(2)

版权声明 以下文章为尚硅谷PDF资料&#xff0c;B站视频链接&#xff1a;【尚硅谷Node.js零基础视频教程&#xff0c;nodejs新手到高手】仅供个人学习交流使用。如涉及侵权问题&#xff0c;请立即与本人联系&#xff0c;本人将积极配合删除相关内容。感谢理解和支持&#xff0c;…...

【pytest】测试数据存储在 Excel 或 TXT 文件中,如何参数化

如果测试数据存储在 Excel 或 TXT 文件中&#xff0c;你可以使用外部库来读取这些数据&#xff0c;并将其转化为参数化测试所需的格式。下面我将分别展示如何从这两种文件中读取数据&#xff0c;并用于参数化测试。 从 Excel 文件中读取测试数据 你可以使用 pandas 库来读取 …...

ubuntu22.04@Jetson Orin Nano安装配置VNC服务端

ubuntu22.04Jetson Orin Nano安装&配置VNC服务端 1. 源由2. 环境3. VNC安装Step 1: update and install xserver-xorg-video-dummyStep 2: Create config for dummy virtual displayStep3: Add the following contents in xorg.conf.dummyStep 4: Update /etc/X11/xorg.con…...

面向对象特征二:继承

继承的概述 生活中的继承 财产继承&#xff1a; 绿化&#xff1a;前人栽树&#xff0c;后人乘凉 “绿水青山&#xff0c;就是金山银山” 样貌&#xff1a; 继承之外&#xff0c;是不是还可以"进化"&#xff1a; 继承有延续&#xff08;下一代延续上一代的基因、财…...

宝塔面板CentOS Stream 8 x86 下如何安装openlitespeed

宝塔自带的软件商店里如果没办法安装&#xff0c;那么我们可以通过指令来手动安装&#xff1a; 第一步&#xff1a; yum install epel-release Package epel-release-8-19.el8.noarch is already installed. Dependencies resolved. Nothing to do. Complete! 第二步&#…...

LeetCode 2952.需要添加的硬币的最小数量:贪心(排序)

【LetMeFly】2952.需要添加的硬币的最小数量&#xff1a;贪心&#xff08;排序&#xff09; 力扣题目链接&#xff1a;https://leetcode.cn/problems/minimum-number-of-coins-to-be-added/ 给你一个下标从 0 开始的整数数组 coins&#xff0c;表示可用的硬币的面值&#xff…...

基于SpringBoot + Vue实现的在线装修管理系统设计与实现+毕业论文

介绍 系统包含用户、装修队、管理员三个角色 管理员&#xff1a; 管理员管理&#xff1a;管理其他管理员的账号和权限&#xff0c;确保系统管理的层次化和安全性。 装修队管理&#xff1a;审核装修队的资质&#xff0c;管理装修队的人员信息&#xff0c;监控工程进度&#xff…...

阿里云安全产品简介,Web应用防火墙与云防火墙产品各自作用介绍

在阿里云的安全类云产品中&#xff0c;Web应用防火墙与云防火墙是用户比较关注的安全类云产品&#xff0c;二则在作用上并不是完全一样的&#xff0c;Web应用防火墙是一款网站Web应用安全的防护产品&#xff0c;云防火墙是一款公共云环境下的SaaS化防火墙&#xff0c;本文为大家…...

作业 二维数组-定位问题

图形相似度 描述 给出两幅相同大小的黑白图像&#xff08;用0-1矩阵&#xff09;表示&#xff0c;求它们的相似度。 说明&#xff1a;若两幅图像在相同位置上的像素点颜色相同&#xff0c;则称它们在该位置具有相同的像素点。 两幅图像的相似度定义为相同像素点数占总像素点数…...

通过Jmeter准备压测数据-mysql示例

1、新建线程组 总共30万条数据 2、创建jdbc链接 创建jdbc连接配置 配置mysql连接 需要在jmeter安装的路径\apache-jmeter-5.6.3\lib\ext 目录下添加mysql 驱动 3、创建jdbc请求 jdbc链接名称需要与上一步中的保持一致&#xff0c;同时添加insert语句 例如 INSERT INTO test…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的&#xff0c;可以通过集中管理和高效资源的分配&#xff0c;来支持多个独立的网站同时运行&#xff0c;让每一个网站都可以分配到独立的IP地址&#xff0c;避免出现IP关联的风险&#xff0c;用户还可以通过控制面板进行管理功…...