python-pytorch获取FashionMNIST实际图片标签数据集
在查看pytorch官方文档的时候,在这里链接中https://pytorch.org/tutorials/beginner/basics/data_tutorial.html的Creating a Custom Dataset for your files章节,有提到要自定义数据集,需要用到实际的图片和标签。
在网上找了半天没找到,写了一个脚本将图片和标签文本下载到本地。
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor# Download training data from open datasets.
training_data = datasets.FashionMNIST(root="data",train=True,download=True,transform=ToTensor(),
)# Download test data from open datasets.
test_data = datasets.FashionMNIST(root="data",train=False,download=True,transform=ToTensor(),
)# 写入到本地
count=0
for index,x in test_data:print(index.size(),x)count=count+1classes = ["T-shirttop","Trouser","Pullover","Dress","Coat","Sandal","Shirt","Sneaker","Bag","Ankleboot",]import torchfrom torchvision.utils import save_imagefolder_path = './data/imageandlableTest' # 替换为你的文件夹路径filename = '{}{}.jpg'.format(classes[x],count) # 图片文件名# 确保文件夹存在import osif not os.path.exists(folder_path):os.makedirs(folder_path)# 保存图片save_path = os.path.join(folder_path, filename)save_image(index, save_path)with open('./data/imageandlableTest/output.txt', 'a') as f: f.write("{},{}\n".format(filename,x))print(count)
相关文章:

python-pytorch获取FashionMNIST实际图片标签数据集
在查看pytorch官方文档的时候,在这里链接中https://pytorch.org/tutorials/beginner/basics/data_tutorial.html的Creating a Custom Dataset for your files章节,有提到要自定义数据集,需要用到实际的图片和标签。 在网上找了半天没找到&a…...
深入探秘Python生成器:揭开神秘的面纱
一、问题起源: 想象一下,您掌握了一种魔法,在代码世界里,您可以轻松呼唤出一个整数。然而,事情并不总是看起来那样简单。在Python的奇妙王国中,我遇到了一个有趣的谜题: def tst():try:print(…...
红队攻防渗透技术实战流程:红队目标信息收集之批量信息收集
红队资产信息收集 1. 自动化信息收集1.1 自动化信息收集工具1.2 自动域名转换IP工具1.3 自动企业信息查询工具1.4 APP敏感信息扫描工具1.5 自动化信息工具的使用1.5.1 资产灯塔系统(ARL)1.5.1.1 docker环境安装1.2.2.9.1 水泽-信息收集自动化工具1. 自动化信息收集 1.1 自动化…...

【vue3学习笔记(二)】(第141-143节)初识setup;ref函数_处理基本类型;ref函数_处理对象类型
尚硅谷Vue2.0Vue3.0全套教程丨vuejs从入门到精通 本篇内容对应课程第141-143节 课程 P141节 《初识setup》笔记 1、setup是所有组合式API“表演的舞台”,组件中所用到的所有数据、方法、监视数据、生命周期钩子等都需要配置在setup中。 2、setup的两种返回值&…...

若依框架学习使用
若依官网项目拉取下来介绍 | RuoYi 项目运行: 1.idea安装,可以运行前后端 编辑器idea、jdk环境安装、数据库mysql、navicat工具、redis(redis-server启动)安装 2.navicat数据库连接, 创建数据库ry-vue并导入数据脚本ry_2021xxxx.sql,qua…...
蓝桥杯_数学模板
1.试除法判定质数 #include <iostream> using namespace std;bool is_zs(int x) {if(x<2) return false;for(int i2;i<x/i;i)if(x%i0)return false;return true; }int main() {int n; cin>>n;while(n--){int x; cin>>x;if(is_zs(x)) cout<<&quo…...

稀碎从零算法笔记Day31-LeetCode:接雨水
半月一去,望舒一轮,明天开始攻坚哈德题了 前言:非常经典的一道笔试题,看了保证血赚(今天银泰星笔试第四题就是这个) 题型:dp、模拟、双指针…… 链接:42. 接雨水 - 力扣ÿ…...
微前端的使用和注意事项 - qiankun
一、为什么使用微前端 微前端架构旨在解决单体应用在一个相对长的时间跨度下,由于参与的人员、团队的增多、变迁,从一个普通应用演变成一个巨石应用(Frontend Monolith)后,随之而来的应用不可维护的问题。微前端的核心目标是将巨石应用拆解成…...

uniapp微信小程序消息订阅详解
一、微信公众平台申请订阅模板 注意:订阅信息 这个事件 是 当用户 点击的时候触发 或者 是 支付成功后触发, 用户勾选 “总是保持以上选择,不再询问” 之后或长期订阅,下次订阅调用 wx.requestSubscribeMessage 不会弹窗…...
git 查看文件夹结构树
在Git中,没有直接的命令可以像文件系统那样展示一个可视化的文件结构树。但是,你可以使用一些外部工具或命令来达到这个目的。 以下是一些方法,你可以使用它们来查看Git仓库的文件结构树: 使用tree命令(如果你的系统已…...
设计模式一详解
一、观察者模式 当一个对象状态发生改变时,依赖它的对象全部会收到通知,并自动更新 场景:一个事件发生后,要执行一连串更新操作。传统的编程方式,就是在事件的代码之后直接加入处理逻辑。当更新的逻辑增多之后&#x…...

python 进程、线程、协程基本使用
1、进程、线程以及协程【1】进程概念【2】线程的概念线程的生命周期进程与线程的区别 【3】协程(Coroutines) 2、多线程实现【1】threading模块【2】互斥锁【3】线程池【4】线程应用 3、多进程实现4、协程实现【1】yield与协程【2】asyncio模块【3】3.8版本【4】aiohttp 1. 并发…...

SQLite3进行数据库各项常用操作
目录 前言1、SQLite介绍2、通过SQLite创建一个数据库文件3、往数据库文件中插入数据4、数据库文件信息查询5、修改数据库中的内容6、删除数据库中的内容 前言 本文是通过轻量化数据库管理工具SQLite进行的基础操作和一些功能实现。 1、SQLite介绍 SQLite是一个广泛使用的嵌入…...
Debian GNU/Linux 安装docker与docker compose
安装 Docker 更新包列表 sudo apt update 安装必要的软件包,以便让 APT 可以通过 HTTPS 使用存储库: sudo apt install apt-transport-https ca-certificates curl gnupg-agent software-properties-common 添加 Docker 的官方 GPG 密钥: cu…...
图片标注编辑平台搭建系列教程(2)——fabric.js简介
文章目录 综述数据管理图形渲染图形编辑事件监听预告 综述 fabric提供了二维图形编辑需要的所有基础能力,包括:数据管理、图形渲染、图形编辑和事件监听。其中,图形编辑可以通过事件监听和图形渲染来实现,所以可以弃用。数据管理…...

Debian linux版本下运行的openmediavault网盘 千兆网卡升级万兆
一、适用场景 1、使用vmware ESXi虚拟化平台运行多种不同应用服务器时,其中网盘服务器采用开源的openmediavault搭建; 2、将老专业服务器升级千兆网为万兆网; 3、需要转移的数据量大的企业或用户; 4、从服务器到服务器的数据转移…...

前端 CSS 经典:grid 栅格布局
前言:Grid 布局是将容器划分成"行"和"列",产生单元格,然后将"项目"分配给划分好的单元格,因为有行和列,可以看作是二维布局。 一 术语 1. 容器 采用网格布局的区域,也就是…...

多输入多输出通道
文章目录 图像卷积填充和步幅填充步幅 多输入多输出通道1x1卷积层 图像卷积 卷积原理: 就是将之前的大的图片,定义一个核函数,然后经过移动并运算将图片变小了.也就是将图像压缩提取整合特征值. 这里利用的时乘法. 填充和步幅 填充 在应用多层卷积时,我们常常…...

http响应练习—在服务器端渲染html(SSR)
一、什么是服务器端渲染(SSR) 简单说,就是在服务器上把网页生成好,整个的HTML页面生成出来,生成出的页面已经包含了所有必要的数据和结构信息,然后直接发给浏览器进行展现。 二、例题 要求搭建http服务&a…...
C++(8): std::deque的使用
1. std::deque std::deque 是 C 标准库中的一个双端队列容器。这个容器支持在序列的两端进行快速的插入和删除操作,其时间复杂度为常数时间 O(1)。同时,std::deque 也提供了对序列中任意元素的随机访问。 2. 特点 (1)双端操作&…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...

dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...

EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...

基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...

Python 实现 Web 静态服务器(HTTP 协议)
目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1)下载安装包2)配置环境变量3)安装镜像4)node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1)使用 http-server2)详解 …...