当前位置: 首页 > news >正文

蓝桥杯省赛刷题——题目 2656:刷题统计

 

刷题统计OJ链接:蓝桥杯2022年第十三届省赛真题-刷题统计 - C语言网 (dotcpp.com)

题目描述

小明决定从下周一开始努力刷题准备蓝桥杯竞赛。他计划周一至周五每天做 a 道题目,周六和周日每天做 b 道题目。请你帮小明计算,按照计划他将在第几天实现做题数大于等于 n 题?

输入格式

输入一行包含三个整数 a, b 和 n.

输出格式

输出一个整数代表天数。

样例输入

10 20 99

样例输出

8

提示

对于 50% 的评测用例,1 ≤ a, b, n ≤ 10^6 . 对于 100% 的评测用例,1 ≤ a, b, n ≤ 10^18 .

C++:

#include <iostream>
using namespace std;
int main()
{long long int a, b, n, sum, k, t;//题目要求n的范围<=10^18所以我们这边要用long longcin >> a >> b >> n;sum = a * 5 + b * 2;//一周能刷的题目数量k = n / sum;//能刷几周t = n - sum * k;//刷的最大周后剩余的题if (t == 0){cout << 7 * k << endl;}else if(t<=a*5)//五天内能刷完{if (t % a == 0){cout << 7 * k + t / a << endl;}else{cout << 7 * k + t / a + 1;}}else if(t>a*5)//五天内刷不完{if ((t - a * 5) > b)//六天内刷不完{cout << 7 * k + 7 << endl;}else{cout << 7 * k + 6 << endl;}}return 0;
}

运行结果: 

 

PS:看到这里了,码字不易,给个一键三连鼓励一下吧!有不足或者错误之处欢迎在评论区指出!

相关文章:

蓝桥杯省赛刷题——题目 2656:刷题统计

刷题统计OJ链接&#xff1a;蓝桥杯2022年第十三届省赛真题-刷题统计 - C语言网 (dotcpp.com) 题目描述 小明决定从下周一开始努力刷题准备蓝桥杯竞赛。他计划周一至周五每天做 a 道题目&#xff0c;周六和周日每天做 b 道题目。请你帮小明计算&#xff0c;按照计划他将在第几…...

Python爬虫之异步爬虫

异步爬虫 一、协程的基本原理 1、案例 案例网站&#xff1a;https://www.httpbin.org/delay/5、这个服务器强制等待了5秒时间才返回响应 测试&#xff1a;用requests写一个遍历程序&#xff0c;遍历100次案例网站&#xff1a; import requests import logging import time…...

【Web】NSSCTF Round#20 Basic 个人wp

目录 前言 真亦假&#xff0c;假亦真 CSDN_To_PDF V1.2 前言 感谢17&#x1f474;没让我爆零 真亦假&#xff0c;假亦真 直接getshell不行&#xff0c;那就一波信息搜集呗&#xff0c;先开dirsearch扫一下 扫的过程中先试试常规的robots.txt,www.zip,shell.phps,.git,.sv…...

【Java笔记】实现延时队列1:JDK DelayQueue

文章目录 需求创建订单类创建延时队列优缺点 Reference JDK DelayQueue是一个无阻塞队列&#xff0c;底层是 PriorityQueue 需求 经典的订单超时取消 创建订单类 放入DelayQueue的对象需要实现Delayed接口 public interface Delayed extends Comparable<Delayed> {…...

npm淘宝镜像源切换

查询 npm config get registry注意因为淘宝的镜像域名更换&#xff0c;https://registry.npm.taobao.org域名HTTPS证书到期更换为https://registry.npmmirror.com/ 切换 npm config set registry https://registry.npmmirror.com/...

ENet——实时语义分割的深度神经网络架构与代码实现

概述 在移动设备上执行实时像素级分割任务具有重要意义。现有的基于分割的深度神经网络需要大量的浮点运算&#xff0c;并且通常需要较长时间才能投入使用。本文提出的ENet架构旨在减少潜在的计算负担。ENet在保持或提高分割精度的同时&#xff0c;相比现有的分割网络&#xf…...

游戏领域AI智能视频剪辑解决方案

游戏行业作为文化创意产业的重要组成部分&#xff0c;其发展和创新速度令人瞩目。然而&#xff0c;随着游戏内容的日益丰富和直播文化的兴起&#xff0c;传统的视频剪辑方式已难以满足玩家和观众日益增长的需求。美摄科技&#xff0c;凭借其在AI智能视频剪辑领域的深厚积累和创…...

腾讯云轻量2核2G3M云服务器优惠价格61元一年,限制200GB月流量

腾讯云轻量2核2G3M云服务器优惠价格61元一年&#xff0c;配置为轻量2核2G、3M带宽、200GB月流量、40GB SSD盘&#xff0c;腾讯云优惠活动 yunfuwuqiba.com/go/txy 活动链接打开如下图&#xff1a; 腾讯云轻量2核2G云服务器优惠价格 腾讯云&#xff1a;轻量应用服务器100%CPU性能…...

leecode 331 |验证二叉树的前序序列化 | gdb 调试找bug

计算的本质是数据的计算 数据的计算需要采用格式化的存储&#xff0c; 规则的数据结果&#xff0c;可以快速的按照指定要求存储数据 这里就不得不说二叉树了&#xff0c;二叉树应用场景真的很多 本题讲的是&#xff0c;验证二叉树的前序序列化 换言之&#xff0c;不采用建立树的…...

服务器安全事件应急响应排查方法

针对服务器操作系统的安全事件也非常多的。攻击方式主要是弱口令攻击、远程溢出攻击及其他应用漏洞攻击等。分析安全事件&#xff0c;找到入侵源&#xff0c;修复漏洞&#xff0c;总结经验&#xff0c;避免再次出现安全事件&#xff0c;以下是参考网络上文章&#xff0c;总结的…...

数码视讯Q7盒子刷armbian或emuelec的一些坑

首先&#xff0c;我手头的盒子是nand存储的&#xff0c;如果是emmc的&#xff0c;会省事很多…… 以下很多结论是我的推测&#xff0c;不一定准确。 1&#xff0c;原装安卓系统不支持SD卡或U盘启动&#xff0c;所以只能进uboot修改启动参数 2&#xff0c;原装安卓系统应该是…...

2_2.Linux中的远程登录服务

# 一.Openssh的功能 # 1.sshd服务的用途# #作用&#xff1a;可以实现通过网络在远程主机中开启安全shell的操作 Secure SHell >ssh ##客户端 Secure SHell daemon >sshd ##服务端 2.安装包# openssh-server 3.主配置文件# /etc/ssh/sshd_conf 4.…...

Spring Boot集成JPA快速入门demo

1.JPA介绍 JPA (Java Persistence API) 是 Sun 官方提出的 Java 持久化规范。它为 Java 开发人员提供了一种对象/关联映射工具来管理 Java 应用中的关系数据。他的出现主要是为了简化现有的持久化开发工作和整合 ORM 技术&#xff0c;结束现在 Hibernate&#xff0c;TopLink&am…...

深度学习理解及学习推荐(持续更新)

主推YouTuBe和Bilibili 深度学习博主推荐&#xff1a; Umar Jamil - YouTubehttps://www.youtube.com/umarjamilai StatQuest with Josh Starmer - YouTubehttps://www.youtube.com/statquest RNN Illustrated Guide to Recurrent Neural Networks: Understanding the Int…...

【C语言】贪吃蛇【附源码】

欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 一、游戏说明&#xff1a; 一个基于C语言链表开发的贪吃蛇游戏&#xff1a; 1. 按方向键上下左右&#xff0c;可以实现蛇移动方向的改变。 2. 短时间长按方向键上下左右其中之一&#xff0c;可实现蛇向该方向的短时间…...

【技巧】压缩文件如何设置“自动加密”?

很多人会在压缩文件的时候&#xff0c;同时设置密码&#xff0c;以此保护私密文件。如果经常需要压缩文件并设置密码&#xff0c;不妨使用解压缩软件的“自动加密”功能&#xff0c;更省时省力。 下面介绍WinRAR解压缩软件的两种“自动加密”的方法&#xff0c;一起来看看吧&a…...

内网穿透时报错【Bad Request This combination of host and port requires TLS.】的原因

目录 前言&#xff1a;介绍一下内网穿透 1.内网直接https访问&#xff08;可以正常访问&#xff09; 程序配置的证书 2.内网穿透后,通过外网访问 3.原因 4.内网非https的Web应用&#xff0c;使用https后&#xff0c;也变成了https访问 5.题外话 感觉自己的web应用配置了…...

计算机网络:物理层 - 信道复用

计算机网络&#xff1a;物理层 - 信道复用 频分复用时分复用统计时分复用波分复用码分复用 计算机网络中&#xff0c;用户之间通过信道进行通信&#xff0c;但是信道是有限的&#xff0c;想要提高网络的效率&#xff0c;就需要提高信道的利用效率。因此计算机网络中普遍采用信道…...

【算法集训】基础算法:滑动窗口

定义一个快慢指针&#xff0c;用于截取数组中某一段信息。同时可以改变快慢指针的值来获取结果&#xff0c;这个过程比较像滑动。 1493. 删掉一个元素以后全为 1 的最长子数组 定义快慢指针快指针先走&#xff0c;如果到了第二个0上的时候。前面1的个数就是fast - slow - 1&a…...

QT 二维坐标系显示坐标点及点与点的连线-通过定时器自动添加随机数据点

QT 二维坐标系显示坐标点及点与点的连线-通过定时器自动添加随机数据点 功能介绍头文件C文件运行过程 功能介绍 上面的代码实现了一个简单的 Qt 应用程序&#xff0c;其功能包括&#xff1a; 创建一个 MainWindow 类&#xff0c;继承自 QMainWindow&#xff0c;作为应用程序的…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

idea大量爆红问题解决

问题描述 在学习和工作中&#xff0c;idea是程序员不可缺少的一个工具&#xff0c;但是突然在有些时候就会出现大量爆红的问题&#xff0c;发现无法跳转&#xff0c;无论是关机重启或者是替换root都无法解决 就是如上所展示的问题&#xff0c;但是程序依然可以启动。 问题解决…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

Qt 事件处理中 return 的深入解析

Qt 事件处理中 return 的深入解析 在 Qt 事件处理中&#xff0c;return 语句的使用是另一个关键概念&#xff0c;它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别&#xff1a;不同层级的事件处理 方…...

离线语音识别方案分析

随着人工智能技术的不断发展&#xff0c;语音识别技术也得到了广泛的应用&#xff0c;从智能家居到车载系统&#xff0c;语音识别正在改变我们与设备的交互方式。尤其是离线语音识别&#xff0c;由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力&#xff0c;广…...

二维FDTD算法仿真

二维FDTD算法仿真&#xff0c;并带完全匹配层&#xff0c;输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...

多元隐函数 偏导公式

我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式&#xff0c;给定一个隐函数关系&#xff1a; F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 &#x1f9e0; 目标&#xff1a; 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z​、 …...

React核心概念:State是什么?如何用useState管理组件自己的数据?

系列回顾&#xff1a; 在上一篇《React入门第一步》中&#xff0c;我们已经成功创建并运行了第一个React项目。我们学会了用Vite初始化项目&#xff0c;并修改了App.jsx组件&#xff0c;让页面显示出我们想要的文字。但是&#xff0c;那个页面是“死”的&#xff0c;它只是静态…...