笔记本电脑上部署LLaMA-2中文模型
尝试在macbook上部署LLaMA-2的中文模型的详细过程。
(1)环境准备
MacBook Pro(M2 Max/32G);
VMware Fusion Player 版本 13.5.1 (23298085);
Ubuntu 22.04.2 LTS;
给linux虚拟机分配8*core CPU 16G RAM。
我这里用的是16bit的量化模型,至少需要13G内存,如果4bit的只需要3.8G内存,当然上述不包含系统本身需要的内存。
(2)环境依赖
sudo apt update
sudo apt-get install gcc g++ python3 python3-pip
python3 -m pip install torch numpy sentencepiece
(3)拉取llama.cpp工具并进行构建
在目录/home/zhangzk下:
git clone https://github.com/ggerganov/llama.cpp.git
#安装依赖,llama.cpp 项目下带有 requirements.txt 文件
pip install -r requirements.txt
#构建llama.cpp
cd llama.cpp/
make -j8
(4)下载LLAMA2中文模型
下载LLama2的中文模型:GitHub - ymcui/Chinese-LLaMA-Alpaca-2: 中文LLaMA-2 & Alpaca-2大模型二期项目 + 64K超长上下文模型 (Chinese LLaMA-2 & Alpaca-2 LLMs with 64K long context models)
这里下载 Chinese-Alpace-2-7B的指令模型,模型文件12.9G。

百度网盘那叫一个慢啊,没有会员能让你等死,还是梯子和GOOGLE网盘配合才叫一个快啊,几分钟的事。
把模型文件(共9个文件)都下载到 /home/zhangzk/llama.cpp/models/chinese-alpaca-2-7b-hf目录下。
(5)量化模型
在目录llama.cpp下执行:
#转换模型
python3 convert.py ./models/chinese-alpaca-2-7b-hf/#16位量化
./quantize ./models/chinese-alpaca-2-7b-hf/ggml-model-f16.gguf ./models/chinese_7b_f16.gguf f16
上述两步执行完会生成新文件llama.cpp/models/chinese_7b_f16.gguf
(6)启动模型
把Chinese-LLaMA-Alpaca-2/scripts/llama-cpp/chat.sh复制到llama.cpp目录下。
chmod +x chat.sh
在目录llama.cpp下执行即可看到模型输出了:
./chat.sh models/chinese_7b_f16.gguf '中国北京有哪些著名的景点?'
附1:QA例子
[INST] >
You are a helpful assistant. 你是一个乐于助人的助手。
>
中国北京有哪些著名的景点?
[/INST] 北京是中国的首都,拥有丰富的历史文化遗产和自然景观资源,以下是一些著名景点:
- 故宫博物院:中国古代皇宫建筑群,是明清两代皇帝的居所,保存了大量的文物和艺术品。
- 天坛公园:古代祭祀天地之场所,是中国现存规模最大、保存最完整的祭天文化遗产之一。
- 颐和园:中国传统皇家园林,被誉为"皇家园林博物馆",以其精美的建筑、湖泊和山水景观而闻名。
- 北京长城:中国古代防御工程的代表,是世界文化遗产,也是世界上最长的城墙。
- 北海公园:古代皇家园林之一,以碧波荡漾、荷花盛开、古树参天为特色,是中国最大的人工湖泊和岛屿园林。
- 圆明园:清代皇家园林,以其精美的建筑、精美的花园和珍贵文物而闻名于世,曾经是世界上最大的皇家园林。
- 北京鸟巢:2008年北京奥运会主体育场,是一座现代化体育场馆,也是北京市区的一个地标性建筑。
- 天安门广场:中国最大的城市广场之一,是中国政治和历史的重要场所,也是游客必去的地方。
- 王府井大街:北京的商业中心,拥有各种购物、餐饮和娱乐设施,是游客体验北京文化的好地方。
- 北京大学:中国的著名高等学府,以其美丽的校园建筑和悠久的历史而闻名于世。
附2: 查看quantize 提供各种精度的量化。
zhangzk@test-llm:~/llama.cpp$ ./quantize --help
usage: ./quantize [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] model-f32.gguf [model-quant.gguf] type [nthreads]
--allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit
--leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing
--pure: Disable k-quant mixtures and quantize all tensors to the same type
--imatrix file_name: use data in file_name as importance matrix for quant optimizations
--include-weights tensor_name: use importance matrix for this/these tensor(s)
--exclude-weights tensor_name: use importance matrix for this/these tensor(s)
Note: --include-weights and --exclude-weights cannot be used together
Allowed quantization types:
2 or Q4_0 : 3.56G, +0.2166 ppl @ LLaMA-v1-7B
3 or Q4_1 : 3.90G, +0.1585 ppl @ LLaMA-v1-7B
8 or Q5_0 : 4.33G, +0.0683 ppl @ LLaMA-v1-7B
9 or Q5_1 : 4.70G, +0.0349 ppl @ LLaMA-v1-7B
19 or IQ2_XXS : 2.06 bpw quantization
20 or IQ2_XS : 2.31 bpw quantization
28 or IQ2_S : 2.5 bpw quantization
29 or IQ2_M : 2.7 bpw quantization
24 or IQ1_S : 1.56 bpw quantization
10 or Q2_K : 2.63G, +0.6717 ppl @ LLaMA-v1-7B
21 or Q2_K_S : 2.16G, +9.0634 ppl @ LLaMA-v1-7B
23 or IQ3_XXS : 3.06 bpw quantization
26 or IQ3_S : 3.44 bpw quantization
27 or IQ3_M : 3.66 bpw quantization mix
12 or Q3_K : alias for Q3_K_M
22 or IQ3_XS : 3.3 bpw quantization
11 or Q3_K_S : 2.75G, +0.5551 ppl @ LLaMA-v1-7B
12 or Q3_K_M : 3.07G, +0.2496 ppl @ LLaMA-v1-7B
13 or Q3_K_L : 3.35G, +0.1764 ppl @ LLaMA-v1-7B
25 or IQ4_NL : 4.50 bpw non-linear quantization
30 or IQ4_XS : 4.25 bpw non-linear quantization
15 or Q4_K : alias for Q4_K_M
14 or Q4_K_S : 3.59G, +0.0992 ppl @ LLaMA-v1-7B
15 or Q4_K_M : 3.80G, +0.0532 ppl @ LLaMA-v1-7B
17 or Q5_K : alias for Q5_K_M
16 or Q5_K_S : 4.33G, +0.0400 ppl @ LLaMA-v1-7B
17 or Q5_K_M : 4.45G, +0.0122 ppl @ LLaMA-v1-7B
18 or Q6_K : 5.15G, +0.0008 ppl @ LLaMA-v1-7B
7 or Q8_0 : 6.70G, +0.0004 ppl @ LLaMA-v1-7B
1 or F16 : 13.00G @ 7B
0 or F32 : 26.00G @ 7B
COPY : only copy tensors, no quantizing
相关文章:
笔记本电脑上部署LLaMA-2中文模型
尝试在macbook上部署LLaMA-2的中文模型的详细过程。 (1)环境准备 MacBook Pro(M2 Max/32G); VMware Fusion Player 版本 13.5.1 (23298085); Ubuntu 22.04.2 LTS; 给linux虚拟机分配8*core CPU 16G RAM。 我这里用的是16bit的量化模型,…...
百度云加速方法「Cheat Engine」
加速网盘下载 相信经常玩游戏的小伙伴都知道「Cheat Engine」这款游戏内存修改器,它除了能对游戏进行内存扫描、调试、反汇编 之外,还能像变速齿轮那样进行本地加速。 这款专注游戏的修改器,被大神发现竟然还能加速百度网盘资源下载…...
SOC内部集成网络MAC外设+ PHY网络芯片方案:PHY芯片基础知识
一. 简介 本文简单了解一下 "SOC内部集成网络MAC外设 PHY网络芯片方案" 这个网络硬件方案中涉及的 PHY网络芯片的基础知识。 二. PHY芯片基础知识 PHY 是 IEEE 802.3 规定的一个标准模块。 1. IEEE规定了PHY芯片的前 16个寄存器功能是一样的 前面说了…...
openGauss 6.0.0-RC1 版本正式发布!
openGauss 6.0.0-RC1版本正式上线! openGauss 6.0.0-RC1是社区最新发布的创新版本,版本生命周期为0.5年。(创新版本命名:由原方案 XX.1.0 Preview (例:5.1.0 preview),调整为现方案 XX.0.0-RCx&…...
【JVM】关于JVM垃圾回收
文章目录 🌴死亡对象的判断算法🌸引用计数算法🌸可达性分析算法 🌳垃圾回收算法🌸标记-清除算法🌸复制算法🌸标记-整理算法🌸分代算法🌸哪些对象会进入新生代?…...
Unity照片墙简易圆形交互效果总结
还要很多可以优化的点地方,有兴趣的可以做 比如对象的销毁和生成可以做成对象池,走到最左边后再移动到最右边循环利用 分析过程文件,采用Blender,资源已上传,可以播放动画看效果,下面截个图: …...
Unity2018发布安卓报错 Exception: Gradle install not valid
Unity2018发布安卓报错 Exception: Gradle install not valid Exception: Gradle install not valid UnityEditor.Android.GradleWrapper.Run (System.String workingdir, System.String task, System.Action1[T] progress) (at <c67d1645d7ce4b76823a39080b82c1d1>:0) …...
蓝桥杯省赛刷题——题目 2656:刷题统计
刷题统计OJ链接:蓝桥杯2022年第十三届省赛真题-刷题统计 - C语言网 (dotcpp.com) 题目描述 小明决定从下周一开始努力刷题准备蓝桥杯竞赛。他计划周一至周五每天做 a 道题目,周六和周日每天做 b 道题目。请你帮小明计算,按照计划他将在第几…...
Python爬虫之异步爬虫
异步爬虫 一、协程的基本原理 1、案例 案例网站:https://www.httpbin.org/delay/5、这个服务器强制等待了5秒时间才返回响应 测试:用requests写一个遍历程序,遍历100次案例网站: import requests import logging import time…...
【Web】NSSCTF Round#20 Basic 个人wp
目录 前言 真亦假,假亦真 CSDN_To_PDF V1.2 前言 感谢17👴没让我爆零 真亦假,假亦真 直接getshell不行,那就一波信息搜集呗,先开dirsearch扫一下 扫的过程中先试试常规的robots.txt,www.zip,shell.phps,.git,.sv…...
【Java笔记】实现延时队列1:JDK DelayQueue
文章目录 需求创建订单类创建延时队列优缺点 Reference JDK DelayQueue是一个无阻塞队列,底层是 PriorityQueue 需求 经典的订单超时取消 创建订单类 放入DelayQueue的对象需要实现Delayed接口 public interface Delayed extends Comparable<Delayed> {…...
npm淘宝镜像源切换
查询 npm config get registry注意因为淘宝的镜像域名更换,https://registry.npm.taobao.org域名HTTPS证书到期更换为https://registry.npmmirror.com/ 切换 npm config set registry https://registry.npmmirror.com/...
ENet——实时语义分割的深度神经网络架构与代码实现
概述 在移动设备上执行实时像素级分割任务具有重要意义。现有的基于分割的深度神经网络需要大量的浮点运算,并且通常需要较长时间才能投入使用。本文提出的ENet架构旨在减少潜在的计算负担。ENet在保持或提高分割精度的同时,相比现有的分割网络…...
游戏领域AI智能视频剪辑解决方案
游戏行业作为文化创意产业的重要组成部分,其发展和创新速度令人瞩目。然而,随着游戏内容的日益丰富和直播文化的兴起,传统的视频剪辑方式已难以满足玩家和观众日益增长的需求。美摄科技,凭借其在AI智能视频剪辑领域的深厚积累和创…...
腾讯云轻量2核2G3M云服务器优惠价格61元一年,限制200GB月流量
腾讯云轻量2核2G3M云服务器优惠价格61元一年,配置为轻量2核2G、3M带宽、200GB月流量、40GB SSD盘,腾讯云优惠活动 yunfuwuqiba.com/go/txy 活动链接打开如下图: 腾讯云轻量2核2G云服务器优惠价格 腾讯云:轻量应用服务器100%CPU性能…...
leecode 331 |验证二叉树的前序序列化 | gdb 调试找bug
计算的本质是数据的计算 数据的计算需要采用格式化的存储, 规则的数据结果,可以快速的按照指定要求存储数据 这里就不得不说二叉树了,二叉树应用场景真的很多 本题讲的是,验证二叉树的前序序列化 换言之,不采用建立树的…...
服务器安全事件应急响应排查方法
针对服务器操作系统的安全事件也非常多的。攻击方式主要是弱口令攻击、远程溢出攻击及其他应用漏洞攻击等。分析安全事件,找到入侵源,修复漏洞,总结经验,避免再次出现安全事件,以下是参考网络上文章,总结的…...
数码视讯Q7盒子刷armbian或emuelec的一些坑
首先,我手头的盒子是nand存储的,如果是emmc的,会省事很多…… 以下很多结论是我的推测,不一定准确。 1,原装安卓系统不支持SD卡或U盘启动,所以只能进uboot修改启动参数 2,原装安卓系统应该是…...
2_2.Linux中的远程登录服务
# 一.Openssh的功能 # 1.sshd服务的用途# #作用:可以实现通过网络在远程主机中开启安全shell的操作 Secure SHell >ssh ##客户端 Secure SHell daemon >sshd ##服务端 2.安装包# openssh-server 3.主配置文件# /etc/ssh/sshd_conf 4.…...
Spring Boot集成JPA快速入门demo
1.JPA介绍 JPA (Java Persistence API) 是 Sun 官方提出的 Java 持久化规范。它为 Java 开发人员提供了一种对象/关联映射工具来管理 Java 应用中的关系数据。他的出现主要是为了简化现有的持久化开发工作和整合 ORM 技术,结束现在 Hibernate,TopLink&am…...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案
JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停 1. 安全点(Safepoint)阻塞 现象:JVM暂停但无GC日志,日志显示No GCs detected。原因:JVM等待所有线程进入安全点(如…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...
LRU 缓存机制详解与实现(Java版) + 力扣解决
📌 LRU 缓存机制详解与实现(Java版) 一、📖 问题背景 在日常开发中,我们经常会使用 缓存(Cache) 来提升性能。但由于内存有限,缓存不可能无限增长,于是需要策略决定&am…...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
springboot 日志类切面,接口成功记录日志,失败不记录
springboot 日志类切面,接口成功记录日志,失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...
