Xception模型详解
简介
Xception的名称源自于"Extreme Inception",它是在Inception架构的基础上进行了扩展和改进。Inception架构是Google团队提出的一种经典的卷积神经网络架构,用于解决深度卷积神经网络中的计算和参数增长问题。
与Inception不同,Xception的主要创新在于使用了深度可分离卷积(Depthwise Separable Convolution)来替代传统的卷积操作。深度可分离卷积将卷积操作分解为两个步骤:深度卷积和逐点卷积。
深度卷积是一种在每个输入通道上分别应用卷积核的操作,它可以有效地减少计算量和参数数量。逐点卷积是一种使用1x1卷积核进行通道间的线性组合的操作,用于增加模型的表示能力。通过使用深度可分离卷积,Xception网络能够更加有效地学习特征表示,并在相同计算复杂度下获得更好的性能。
Xception 网络结构
一个标准的Inception模块(Inception V3)
简化后的Inception模块
简化后的Inception的等价结构
采用深度可分离卷积的思想,使 3×3 卷积的数量与 1×1卷积输出通道的数量相等
Xception模型,一共可以分为3个flow,分别是Entry flow、Middle flow、Exit flow。
在这里 Entry 与 Exit 都具有相同的部分,Middle 与这二者有所不同。
Xception模型的pytorch复现
(1)深度可分离卷积
class SeparableConv2d(nn.Module):def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, dilation=1, bias=False):super(SeparableConv2d, self).__init__()self.conv = nn.Conv2d(in_channels, in_channels, kernel_size, stride, padding,dilation, groups=in_channels, bias=bias)self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0,dilation=1, groups=1, bias=False)def forward(self, x):x = self.conv(x)x = self.pointwise(x)return x
(2)构建三个flow结构
class EntryFlow(nn.Module):def __init__(self):super(EntryFlow, self).__init__()self.headconv = nn.Sequential(nn.Conv2d(3, 32, 3, 2, bias=False),nn.BatchNorm2d(32),nn.ReLU(inplace=True),nn.Conv2d(32, 64, 3, bias=False),nn.BatchNorm2d(64),nn.ReLU(inplace=True),)self.residual_block1 = nn.Sequential(SeparableConv2d(64, 128, 3, padding=1),nn.BatchNorm2d(128),nn.ReLU(inplace=True),SeparableConv2d(128, 128, 3, padding=1),nn.BatchNorm2d(128),nn.MaxPool2d(3, stride=2, padding=1),)self.residual_block2 = nn.Sequential(nn.ReLU(inplace=True),SeparableConv2d(128, 256, 3, padding=1),nn.BatchNorm2d(256),nn.ReLU(inplace=True),SeparableConv2d(256, 256, 3, padding=1),nn.BatchNorm2d(256),nn.MaxPool2d(3, stride=2, padding=1))self.residual_block3 = nn.Sequential(nn.ReLU(inplace=True),SeparableConv2d(256, 728, 3, padding=1),nn.BatchNorm2d(728),nn.ReLU(inplace=True),SeparableConv2d(728, 728, 3, padding=1),nn.BatchNorm2d(728),nn.MaxPool2d(3, stride=2, padding=1))def shortcut(self, inp, oup):return nn.Sequential(nn.Conv2d(inp, oup, 1, 2, bias=False),nn.BatchNorm2d(oup))def forward(self, x):x = self.headconv(x)residual = self.residual_block1(x)shortcut_block1 = self.shortcut(64, 128)x = residual + shortcut_block1(x)residual = self.residual_block2(x)shortcut_block2 = self.shortcut(128, 256)x = residual + shortcut_block2(x)residual = self.residual_block3(x)shortcut_block3 = self.shortcut(256, 728)x = residual + shortcut_block3(x)return xclass MiddleFlow(nn.Module):def __init__(self):super(MiddleFlow, self).__init__()self.shortcut = nn.Sequential()self.conv1 = nn.Sequential(nn.ReLU(inplace=True),SeparableConv2d(728, 728, 3, padding=1),nn.BatchNorm2d(728),nn.ReLU(inplace=True),SeparableConv2d(728, 728, 3, padding=1),nn.BatchNorm2d(728),nn.ReLU(inplace=True),SeparableConv2d(728, 728, 3, padding=1),nn.BatchNorm2d(728))def forward(self, x):residual = self.conv1(x)input = self.shortcut(x)return input + residualclass ExitFlow(nn.Module):def __init__(self):super(ExitFlow, self).__init__()self.residual_with_exit = nn.Sequential(nn.ReLU(inplace=True),SeparableConv2d(728, 728, 3, padding=1),nn.BatchNorm2d(728),nn.ReLU(inplace=True),SeparableConv2d(728, 1024, 3, padding=1),nn.BatchNorm2d(1024),nn.MaxPool2d(3, stride=2, padding=1))self.endconv = nn.Sequential(SeparableConv2d(1024, 1536, 3, 1, 1),nn.BatchNorm2d(1536),nn.ReLU(inplace=True),SeparableConv2d(1536, 2048, 3, 1, 1),nn.BatchNorm2d(2048),nn.ReLU(inplace=True),nn.AdaptiveAvgPool2d((1, 1)),)def shortcut(self, inp, oup):return nn.Sequential(nn.Conv2d(inp, oup, 1, 2, bias=False),nn.BatchNorm2d(oup))def forward(self, x):residual = self.residual_with_exit(x)shortcut_block = self.shortcut(728, 1024)output = residual + shortcut_block(x)return self.endconv(output)
(3)构建网络(完整代码)
"""
Copyright (c) 2023, Auorui.
All rights reserved.Xception: Deep Learning with Depthwise Separable Convolutions<https://arxiv.org/pdf/1610.02357.pdf>
"""
import torch
import torch.nn as nnclass SeparableConv2d(nn.Module):def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, dilation=1, bias=False):super(SeparableConv2d, self).__init__()self.conv = nn.Conv2d(in_channels, in_channels, kernel_size, stride, padding,dilation, groups=in_channels, bias=bias)self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0,dilation=1, groups=1, bias=False)def forward(self, x):x = self.conv(x)x = self.pointwise(x)return xclass EntryFlow(nn.Module):def __init__(self):super(EntryFlow, self).__init__()self.headconv = nn.Sequential(nn.Conv2d(3, 32, 3, 2, bias=False),nn.BatchNorm2d(32),nn.ReLU(inplace=True),nn.Conv2d(32, 64, 3, bias=False),nn.BatchNorm2d(64),nn.ReLU(inplace=True),)self.residual_block1 = nn.Sequential(SeparableConv2d(64, 128, 3, padding=1),nn.BatchNorm2d(128),nn.ReLU(inplace=True),SeparableConv2d(128, 128, 3, padding=1),nn.BatchNorm2d(128),nn.MaxPool2d(3, stride=2, padding=1),)self.residual_block2 = nn.Sequential(nn.ReLU(inplace=True),SeparableConv2d(128, 256, 3, padding=1),nn.BatchNorm2d(256),nn.ReLU(inplace=True),SeparableConv2d(256, 256, 3, padding=1),nn.BatchNorm2d(256),nn.MaxPool2d(3, stride=2, padding=1))self.residual_block3 = nn.Sequential(nn.ReLU(inplace=True),SeparableConv2d(256, 728, 3, padding=1),nn.BatchNorm2d(728),nn.ReLU(inplace=True),SeparableConv2d(728, 728, 3, padding=1),nn.BatchNorm2d(728),nn.MaxPool2d(3, stride=2, padding=1))def shortcut(self, inp, oup):return nn.Sequential(nn.Conv2d(inp, oup, 1, 2, bias=False),nn.BatchNorm2d(oup))def forward(self, x):x = self.headconv(x)residual = self.residual_block1(x)shortcut_block1 = self.shortcut(64, 128)x = residual + shortcut_block1(x)residual = self.residual_block2(x)shortcut_block2 = self.shortcut(128, 256)x = residual + shortcut_block2(x)residual = self.residual_block3(x)shortcut_block3 = self.shortcut(256, 728)x = residual + shortcut_block3(x)return xclass MiddleFlow(nn.Module):def __init__(self):super(MiddleFlow, self).__init__()self.shortcut = nn.Sequential()self.conv1 = nn.Sequential(nn.ReLU(inplace=True),SeparableConv2d(728, 728, 3, padding=1),nn.BatchNorm2d(728),nn.ReLU(inplace=True),SeparableConv2d(728, 728, 3, padding=1),nn.BatchNorm2d(728),nn.ReLU(inplace=True),SeparableConv2d(728, 728, 3, padding=1),nn.BatchNorm2d(728))def forward(self, x):residual = self.conv1(x)input = self.shortcut(x)return input + residualclass ExitFlow(nn.Module):def __init__(self):super(ExitFlow, self).__init__()self.residual_with_exit = nn.Sequential(nn.ReLU(inplace=True),SeparableConv2d(728, 728, 3, padding=1),nn.BatchNorm2d(728),nn.ReLU(inplace=True),SeparableConv2d(728, 1024, 3, padding=1),nn.BatchNorm2d(1024),nn.MaxPool2d(3, stride=2, padding=1))self.endconv = nn.Sequential(SeparableConv2d(1024, 1536, 3, 1, 1),nn.BatchNorm2d(1536),nn.ReLU(inplace=True),SeparableConv2d(1536, 2048, 3, 1, 1),nn.BatchNorm2d(2048),nn.ReLU(inplace=True),nn.AdaptiveAvgPool2d((1, 1)),)def shortcut(self, inp, oup):return nn.Sequential(nn.Conv2d(inp, oup, 1, 2, bias=False),nn.BatchNorm2d(oup))def forward(self, x):residual = self.residual_with_exit(x)shortcut_block = self.shortcut(728, 1024)output = residual + shortcut_block(x)return self.endconv(output)class Xception(nn.Module):def __init__(self, num_classes=1000):super().__init__()self.num_classes = num_classesself.entry_flow = EntryFlow()self.middle_flow = MiddleFlow()self.exit_flow = ExitFlow()self.fc = nn.Linear(2048, num_classes)def forward(self, x):x = self.entry_flow(x)for i in range(8):x = self.middle_flow(x)x = self.exit_flow(x)x = x.view(x.size(0), -1)out = self.fc(x)return outif __name__=='__main__':import torchsummarydevice = 'cuda' if torch.cuda.is_available() else 'cpu'input = torch.ones(2, 3, 224, 224).to(device)net = Xception(num_classes=4)net = net.to(device)out = net(input)print(out)print(out.shape)torchsummary.summary(net, input_size=(3, 224, 224))# Xception Total params: 19,838,076
参考文章
【精读AI论文】Xception ------(Xception: Deep Learning with Depthwise Separable Convolutions)_xception论文-CSDN博客
[ 轻量级网络 ] 经典网络模型4——Xception 详解与复现-CSDN博客
神经网络学习小记录22——Xception模型的复现详解_xception timm-CSDN博客
【卷积神经网络系列】十七、Xception_xception模块-CSDN博客
相关文章:

Xception模型详解
简介 Xception的名称源自于"Extreme Inception",它是在Inception架构的基础上进行了扩展和改进。Inception架构是Google团队提出的一种经典的卷积神经网络架构,用于解决深度卷积神经网络中的计算和参数增长问题。 与Inception不同࿰…...

【合合TextIn】AI构建新质生产力,合合信息Embedding模型助力专业知识应用
目录 一、合合信息acge模型获MTEB中文榜单第一 二、MTEB与C-MTEB 三、Embedding模型的意义 四、合合信息acge模型 (一)acge模型特点 (二)acge模型功能 (三)acge模型优势 五、公司介绍 一、合合信息…...

Flutter 拦截系统键盘,显示自定义键盘
一、这里记录下在开发过程中,下单的时候输入金额需要使用自定义的数字键盘 参考链接: https://juejin.cn/post/7166046328609308685 效果图 二、屏蔽系统键盘 怎样才能够在输入框获取焦点的时候,不让系统键盘弹出呢?同时又显示我们自定义的…...
内存泄漏是什么?如何避免内存泄漏?
1.2 内存泄漏 使用new开辟空间泄漏,抛出异常 int main() {int size 0;try{while (1){//int* p (int*)malloc(sizeof(int) * 1024 * 1024);/*if (p NULL){break;}*/int* p new int[1024 * 1024];size size 4 * 1024 * 1024;cout << p << endl;}}…...
linux 中的syslog的含义和用法
在Linux系统中,syslog是一种系统日志服务,用于收集、存储和管理系统和应用程序生成的日志消息。syslog服务负责记录系统的运行状态、错误信息、警告、调试信息等,以便系统管理员可以监控系统的健康状况、故障排查和性能优化。 含义和作用&am…...

kubernetes(K8S)学习(一):K8S集群搭建(1 master 2 worker)
K8S集群搭建(1 master 2 worker) 一、环境资源准备1.1、版本统一1.2、k8s环境系统要求1.3、准备三台Centos7虚拟机 二、集群搭建2.1、更新yum,并安装依赖包2.2、安装Docker2.3、设置hostname,修改hosts文件2.4、设置k8s的系统要求…...
巧克力(蓝桥杯)
文章目录 巧克力题目描述解题分析贪心 巧克力 题目描述 小蓝很喜欢吃巧克力,他每天都要吃一块巧克力。 一天小蓝到超市想买一些巧克力。超市的货架上有很多种巧克力,每种巧克力有自己的价格、数量和剩余的保质期天数,小蓝只吃没过保质期的…...
Python爬虫之pyquery和parsel的使用
三、pyquery的使用 1、准备工作 pip3 install pyquery2、初始化 2.1、字符串初始化 把HTML的内容当做参数,来初始化PyQuery对象。 html <div><ul><li class"item-0">first item</li><li class"item-1">&l…...

移动硬盘怎么加密?移动硬盘加密软件有哪些?
移动硬盘是我们在工作中最常用的移动存储设备,为了保护数据安全,需要使用专业的移动硬盘加密软件加密保护。那么,移动硬盘加密软件有哪些? BitLocker BitLocker是Windows的磁盘加锁功能,可以用于加密保护移动硬盘中…...
openEuler 22.03 安装 .NET 8.0
openEuler 22.03 安装 .NET 8.0 openEuler 22.03 安装 .NET 8.0 openEuler 22.03 安装 .NET 8.0 查看内核信息 [jeffPC-20240314EIAA ~]$ cat /proc/version Linux version 5.15.146.1-microsoft-standard-WSL2 (root65c757a075e2) (gcc (GCC) 11.2.0, GNU ld (GNU Binutils)…...
【转载】OpenCV ECC图像对齐实现与代码演示(Python / C++源码)
发现一个有很多实践代码的git 库,特记录下: 地址:GitHub - luohenyueji/OpenCV-Practical-Exercise: OpenCV practical exercise 作者博客地址:https://blog.csdn.net/LuohenYJ 已关注。 Items项目Resources1age_gender1基于深度学习识别人脸性别和年龄Model2OpenCV_dlib_…...

每日一题(相交链表 )
欢迎大家来我们主页进行指导 LaNzikinh-CSDN博客 160. 相交链表 - 力扣(LeetCode) 给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null 。 图示两个链表在节…...
C#WPF控件大全
本文列出WPF控件大全,点击可以进入详情页查看。 列表如下: AccessText用下划线来指定用作访问键的字符。 ActivatingKeyTipEventArgs为 ActivatingKeyTip 事件提供数据。...

好书推荐 《AIGC重塑金融》
作者:林建明 来源:IT 阅读排行榜 本文摘编自《AIGC 重塑金融:AI 大模型驱动的金融变革与实践》,机械工业出版社出版 这是最好的时代,也是最坏的时代。尽管大模型技术在金融领域具有巨大的应用潜力,但其应…...

【Linux】权限理解
权限理解 1. shell命令以及运行原理2. Linux权限的概念3. Linux权限管理3.1 文件访问者的分类(人)3.2 文件类型和访问权限(事物属性)3.2.1 文件类型3.2.2 基本权限 3.3 文件权限值的表示方法3.4 文件访问权限的相关设置方法3.4.1 …...

插入排序、归并排序、堆排序和快速排序的稳定性分析
插入排序、归并排序、堆排序和快速排序的稳定性分析 一、插入排序的稳定性二、归并排序的稳定性三、堆排序的稳定性四、快速排序的稳定性总结 在计算机科学中,排序是将一组数据按照特定顺序进行排列的过程。排序算法的效率和稳定性是评价其优劣的两个重要指标。稳定…...

【pytest、playwright】多账号同时操作
目录 方案实现思路: 方案一: 方案二: 方案实现思路: 依照上图所见,就知道,一个账号是pytest-playwright默认的环境,一个是 账号登录的环境 方案一: 直接上代码: imp…...

软考 系统架构设计师系列知识点之云原生架构设计理论与实践(8)
接前一篇文章:软考 系统架构设计师系列知识点之云原生架构设计理论与实践(7) 所属章节: 第14章. 云原生架构设计理论与实践 第2节 云原生架构内涵 14.2 云原生架构内涵 关于云原生的定义有众多版本,对于云原生架构的…...

【C++】stack、queue和优先级队列
一、前言 二、stack类 2.1 了解stack 2.2 使用stack (1)empty (2)size (3)top (4)push (5)pop 2.3 stack的模拟实现 三、queue类 3.1 了解queue …...

第十三届蓝桥杯国赛真题 Java C 组【原卷】
文章目录 发现宝藏试题 A: 斐波那契与 7试题 B: 小蓝做实验试题 C: 取模试题 D: 内存空间试题 E \mathrm{E} E : 斐波那契数组试题 F: 最大公约数试题 G: 交通信号试题 I: 打折试题 J: 宝石收集 发现宝藏 前些天发现了一个巨牛的人工智能学习网站,通俗易懂&#x…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...