当前位置: 首页 > news >正文

【C++】每日一题 12 整数转罗马数字

罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。

字符 数值
I 1
V 5
X 10
L 50
C 100
D 500
M 1000
例如, 罗马数字 2 写做 II ,即为两个并列的 1。12 写做 XII ,即为 X + II 。 27 写做 XXVII, 即为 XX + V + II 。

通常情况下,罗马数字中小的数字在大的数字的右边。但也存在特例,例如 4 不写做 IIII,而是 IV。数字 1 在数字 5 的左边,所表示的数等于大数 5 减小数 1 得到的数值 4 。同样地,数字 9 表示为 IX。这个特殊的规则只适用于以下六种情况:

I 可以放在 V (5) 和 X (10) 的左边,来表示 4 和 9。
X 可以放在 L (50) 和 C (100) 的左边,来表示 40 和 90。
C 可以放在 D (500) 和 M (1000) 的左边,来表示 400 和 900。
给你一个整数,将其转为罗马数字。

#include <string>
using namespace std;class Solution {
public:string intToRoman(int num) {
string s[] = { "M","CM","D","CD","C","XC","L","XL","X","IX","V","IV","I"};int nums[] = { 1000,900,500,400,100,90,50,40,10,9,5,4,1 };int res = num;string ret = "";int i = 0;while (res > 0) {while (nums[i] <= res) {res -= nums[i];ret += s[i];}i += 1;}return ret;}
};// 示例测试
int main() {int num = 58;string result = intToRoman(num);cout << result << endl;  // 输出: "LVIII"return 0;
}

时间复杂度分析

对于给定的数字 num,我们需要不断地减去对应的罗马数字值,直到 num 为 0。由于最坏情况下,num 可以是 3999,因此时间复杂度为 O(1)。

空间复杂度分析

算法中使用了固定长度的数组存储罗马数字字符和对应的数字值,因此空间复杂度为 O(1)。

相关文章:

【C++】每日一题 12 整数转罗马数字

罗马数字包含以下七种字符&#xff1a; I&#xff0c; V&#xff0c; X&#xff0c; L&#xff0c;C&#xff0c;D 和 M。 字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000 例如&#xff0c; 罗马数字 2 写做 II &#xff0c;即为两个并列的 1。12 写做 XII &#xff0c;即为…...

C++学习建议

C是一门强大且广泛应用的编程语言&#xff0c;特别适合系统级开发、高性能应用和游戏引擎等场景。如果你准备深入学习C&#xff0c;以下是一些关键点和学习路径建议&#xff1a; 1. **基础语法**&#xff1a;首先掌握C的基础语法&#xff0c;如变量声明与赋值、数据类型、运算…...

python实现泊松回归

1 什么是基于计数的数据&#xff1f; 基于计数的数据包含以特定速率发生的事件。发生率可能会随着时间的推移或从一次观察到下一次观察而发生变化。以下是基于计数的数据的一些示例&#xff1a; 每小时穿过十字路口的车辆数量每月去看医生的人数每月发现的类地行星数量 计数数…...

软件测试-进阶篇

目录 测试的分类1 按测试对象划分1.1 界面测试1.2 可靠性测试1.3 容错性测试1.4 文档测试1.5 兼容性测试1.6 易用性测试1.7 安装卸载测试1.8 安装测试1.9 性能测试1.10 内存泄漏测试 2 按是否查看代码划分2.1 黑盒测试&#xff08;Black-box Testing&#xff09;2.2 白盒测试&a…...

Google人才选拔的独特视角

Google人才选拔的独特视角 独特的人才选拔标准 Google作为全球最大的搜索引擎公司&#xff0c;拥有无数优秀的人才。他们的选拔标准与众不同&#xff0c;有着自己独特的人才观。 重视多元化的背景 Google相信人才的多元化背景能够给公司带来不同的思考角度和创新思维。他们…...

OSPF---开放式最短路径优先协议

1. OSPF描述 OSPF协议是一种链路状态协议。每个路由器负责发现、维护与邻居的关系&#xff0c;并将已知的邻居列表和链路费用LSU报文描述&#xff0c;通过可靠的泛洪与自治系统AS内的其他路由器周期性交互&#xff0c;学习到整个自治系统的网络拓扑结构;并通过自治系统边界的路…...

云数据仓库Snowflake论文完整版解读

本文是对于Snowflake论文的一个完整版解读&#xff0c;对于从事大数据数据仓库开发&#xff0c;数据湖开发的读者来说&#xff0c;这是一篇必须要详细了解和阅读的内容&#xff0c;通过全文你会发现整个数据湖设计的起初原因以及从各个维度&#xff08;架构设计、存算分离、弹性…...

Redis中是如何初始化服务器的?

初始化服务器 一个Redis服务器从启动到能够接受客户端的命令请求&#xff0c;需要经过一系列的初始化和设置过程&#xff0c;比如初始化服务器状态&#xff0c;接受用户指定的服务器配置&#xff0c;创建相应的数据结构和网络连接等等 初始化服务器状态结构 初始化服务器的第…...

深度学习训练过程中,常见的关键参数和概念讲解

深度学习训练过程中的关键参数和概念对于构建、理解和优化模型至关重要。以下是一些最常见的参数和概念&#xff0c;以及它们的简要解释&#xff1a; 1. 学习率&#xff08;Learning Rate&#xff09; 学习率是优化算法中最重要的参数之一&#xff0c;它控制着权重调整的幅度…...

如何提高小红书笔记的收录率?

在小红书平台上&#xff0c;笔记的收录率是衡量一篇笔记是否受欢迎和有价值的重要因素。为了提高笔记的收录率&#xff0c;有几个关键点需要注意&#xff1a; 1.内容不涉及广告 在发布笔记前要先确保笔记内容不包含任何形式的广告或推广信息。小红书平台对于广告性质的内容有…...

思通数科:利用开源AI能力引擎平台打造企业智能搜索系统

在信息爆炸的时代&#xff0c;如何高效地管理和检索海量数据已成为企业和个人面临的一大挑战。思通数科 StoneDT 多模态AI能力引擎平台&#xff0c;以其强大的自然语言处理&#xff08;NLP&#xff09;、OCR识别、图像识别和文本抽取技术&#xff0c;为用户带来了前所未有的智能…...

Nginx配置其实很简单

Nginx配置其实很简单 不管作为前端还是后端,我们工作中或多或少得接触反向代理,比如代理静态页面或者文件、代理接口解决跨域、配置https、配置缓存和负载等等。而这些需求的实现,我们肯定能接触到Nginx,即使我们使用Caddy等等其它代理方式,但也肯定知道Nginx的存在。如果…...

Redis中的serverCron函数(一)

serverCron函数 Redis服务器中的serverCron函数默认每隔100毫秒执行一次&#xff0c;这个函数负责管理服务器的资源&#xff0c;并保持服务器自身的良好运转。 更新服务器时间缓存 Redis服务器中有不少功能需要获取系统的当前时间&#xff0c;而每次获取系统的当前时间都需要…...

python保存中间变量(学习笔记)

python保存中间变量 原因&#xff1a; 最近在部署dust3r算法&#xff0c;虽然在本地部署了&#xff0c;也能测试出一定的结果&#xff0c;但是发现无法跑很多图片&#xff0c;为了能够测试多张图片跑出来的模型&#xff0c;于是就在打算在autodl上部署算法&#xff0c;但是由…...

CTF wed安全(攻防世界)练习题

一、Training-WWW-Robots 进入网站如图&#xff1a; 翻译&#xff1a;在这个小小的挑战训练中&#xff0c;你将学习Robots exclusion standard。网络爬虫使用robots.txt文件来检查它们是否被允许抓取和索引您的网站或只是其中的一部分。 有时这些文件会暴露目录结构&#xff0c…...

计算机网络链路层

数据链路 链路是从一个节点到相邻节点之间的物理线路&#xff08;有线或无线&#xff09; 数据链路是指把实现协议的软件和硬件加到对应链路上。帧是点对点信道的数据链路层的协议数据单元。 点对点信道 通信的主要步骤&#xff1a; 节点a的数据链路层将网络层交下来的包添…...

VUE3——reactive对比ref

从定义数据角度对比: 。ref用来定义:基本类型数据 。reactive用来定义:对象(或数组)类型数据。 。备注:ref也可以用来定义对象(或数组)类型数据,它内部会自动通过 reactive 转为代理对象。 从原理角度对比: 。ref通过 object.defineProperty()的 get 与set 来实现响应式(数据劫…...

广场舞团系统的设计与实现|Springboot+ Mysql+Java+ B/S结构(可运行源码+数据库+设计文档)

本项目包含可运行源码数据库LW&#xff0c;文末可获取本项目的所有资料。 推荐阅读100套最新项目持续更新中..... 2024年计算机毕业论文&#xff08;设计&#xff09;学生选题参考合集推荐收藏&#xff08;包含Springboot、jsp、ssmvue等技术项目合集&#xff09; 目录 1. 系…...

经典永不过时 Wordpress模板主题

经得住时间考验的模板&#xff0c;才是经典模板&#xff0c;带得来客户的网站&#xff0c;才叫NB网站。 https://www.jianzhanpress.com/?p2484...

QT布局管理和空间提升为和空间间隔

QHBoxLayout&#xff1a;按照水平方向从左到右布局&#xff1b; QVBoxLayout&#xff1a;按照竖直方向从上到下布局&#xff1b; QGridLayout&#xff1a;在一个网格中进行布局&#xff0c;类似于HTML的table&#xff1b; 基本布局管理类包括&#xff1a;QBoxLayout、QGridL…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...