当前位置: 首页 > news >正文

大模型量化技术-BitsAndBytes

Transformers 量化技术 BitsAndBytes

在这里插入图片描述

bitsandbytes是将模型量化为8位和4位的最简单选择。

  • 8位量化将fp16中的异常值与int8中的非异常值相乘,将非异常值转换回fp16,然后将它们相加以返回fp16中的权重。这减少了异常值对模型性能产生的降级效果。
  • 4位量化进一步压缩了模型,并且通常与QLoRA一起用于微调量化LLM(低精度语言模型)。

异常值是指大于某个阈值的隐藏状态值,这些值是以fp16进行计算的。虽然这些值通常服从正态分布([-3.5, 3.5]),但对于大型模型来说,该分布可能会有很大差异([-60, 6]或[6, 60])。8位量化适用于约为5左右的数值,但超过此范围后将导致显著性能损失。一个好的默认阈值是6,但对于不稳定的模型(小型模型或微调)可能需要更低的阈值。)

在 Transformers 中使用参数量化

使用 Transformers 库的 model.from_pretrained()方法中的load_in_8bitload_in_4bit参数,便可以对模型进行量化。只要模型支持使用Accelerate加载并包含torch.nn.Linear层,这几乎适用于任何模态的任何模型。

相关文章:

大模型量化技术-BitsAndBytes

Transformers 量化技术 BitsAndBytes bitsandbytes是将模型量化为8位和4位的最简单选择。 8位量化将fp16中的异常值与int8中的非异常值相乘,将非异常值转换回fp16,然后将它们相加以返回fp16中的权重。这减少了异常值对模型性能产生的降级效果。4位量化进一步压缩了模型,并且…...

EasyExcel 复杂表头的导出(动态表头和静态表头)

问题:如图,1部分的表头是动态的根据日期变化,2部分是数据库对应的字段,静态不变的; 解决方案:如果不看1的部分,2部分内容可以根据实体类注解的方式导出,那么我们是不是可以先将动态表…...

centos7 fatal error: curl/curl.h: No such file or directory

若编译遇到此问题,可以查看环境是否libcurl库 yum list installed | grep libcurl 发现未安装libcurl库 执行libcurl库的安装命令: 1.对于Debian/Ubuntu系统: sudo apt-get install libcurl4-openssl-dev 2.对于RHEL/CentOS系统&#xf…...

【Linux】自定义协议+序列化+反序列化

自定义协议序列化反序列化 1.再谈 "协议"2.Cal TCP服务端2.Cal TCP客户端4.Json 喜欢的点赞,收藏,关注一下把! 1.再谈 “协议” 协议是一种 “约定”。在前面我们说过父亲和儿子约定打电话的例子,不过这是感性的认识&a…...

常见故障排查和优化

一、MySQL单实例故障排查 故障现象 1 ERROR 2002 (HY000): Cant connect to local MySQL server through socket /data/mysql/mysql.sock (2) 问题分析:以上情况一般都是数据库未启动或者数据库端口被防火墙拦截导致。 解决方法:启动数据库或者防火墙…...

选择华为HCIE培训机构有哪些注意事项

选择软件培训机构注意四点事项1、口碑:学员和社会人士对该机构的评价怎样? 口碑对于一个机构是十分重要的,这也是考量一个机构好不好的重要标准,包括社会评价和学员的评价和感言。誉天作为华为首批授权培训中心,一直致…...

python怎么处理txt

导入文件处理模块 import os 检测路径是否存在,存在则返回True,不存在则返回False os.path.exists("demo.txt") 如果你要创建一个文件并要写入内容 #如果demo.txt文件存在则会覆盖,并且demo.txt文件里面的内容被清空,如…...

SAMRTFORMS 转换PDF 发送邮件

最终成果: *&---------------------------------------------------------------------**& Report ZLC_FIND_EXIT*&---------------------------------------------------------------------**&根据T-CODE / 程序名查询出口、BADI增强*&-------…...

探讨在大数据体系中API的通信机制与工作原理

** 引言 关联阅读博客文章:深入解析大数据体系中的ETL工作原理及常见组件 关联阅读博客文章:深入理解HDFS工作原理:大数据存储和容错性机制解析 ** 在当今数字化时代,数据已经成为企业发展和决策的核心。随着数据规模的不断增长…...

算法打卡day23

今日任务: 1)39. 组合总和 2)40.组合总和II 3)131.分割回文串 39. 组合总和 题目链接:39. 组合总和 - 力扣(LeetCode) 给定一个无重复元素的数组 candidates 和一个目标数 target ,…...

每天五分钟深度学习:神经网络和深度学习有什么样的关系?

本文重点 神经网络是一种模拟人脑神经元连接方式的计算模型,通过大量神经元之间的连接和权重调整,实现对输入数据的处理和分析。而深度学习则是神经网络的一种特殊形式,它通过构建深层次的神经网络结构,实现对复杂数据的深度学习…...

基于PSO优化的CNN-LSTM-Attention的时间序列回归预测matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1卷积神经网络(CNN)在时间序列中的应用 4.2 长短时记忆网络(LSTM)处理序列依赖关系 4.3 注意力机制(Attention) 5…...

物联网监控可视化是什么?部署物联网监控可视化大屏有什么作用?

随着物联网技术的深入应用,物联网监控可视化成为了企业数字化转型的关键环节。物联网监控可视化大屏作为物联网监控平台的重要组成部分,能够实时展示物联网设备的运行状态和数据,为企业管理决策和运维监控提供了有力的支持。今天,…...

设计一个Rust线程安全栈结构 Stack<T>

在Rust中&#xff0c;设计一个线程安全的栈结构Stack<T>&#xff0c;类似于Channel<T>&#xff0c;但使用栈的FILO&#xff08;First-In-Last-Out&#xff09;原则来在线程间传送数据&#xff0c;可以通过使用标准库中的同步原语如Mutex和Condvar来实现。下面是一个…...

Docker Desktop 在 Windows 上的安装和使用

目录 1、安装 Docker Desktop 2、使用 Docker Desktop &#xff08;1&#xff09;运行容器 &#xff08;2&#xff09;查看容器信息 &#xff08;3&#xff09;数据挂载 Docker Desktop是Docker的官方桌面版&#xff0c;专为Mac和Windows用户设计&#xff0c;提供了一个简…...

2024年最受欢迎的 19 个 VS Code 主题排行榜

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …...

突破编程_C++_网络编程(OSI 七层模型(物理层与数据链路层))

1 OSI 七层模型概述 OSI&#xff08;Open Systems Interconnection&#xff09;七层模型&#xff0c;即开放系统互联参考模型&#xff0c;起源于 20 世纪 70 年代和 80 年代。随着计算机网络技术的快速发展和普及&#xff0c;不同厂商生产的计算机和网络设备之间的互操作性成为…...

Spring boot如何使用redis缓存

引入依赖 这个是参照若依的&#xff0c;如果没有统一的版本规定的话&#xff0c;这里是需要写版本号的 <!-- redis 缓存操作 --> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</arti…...

红蓝色WordPress外贸建站模板

红蓝色WordPress外贸建站模板 https://www.mymoban.com/wordpress/5.html...

python爬虫----了解爬虫(十一天)

&#x1f388;&#x1f388;作者主页&#xff1a; 喔的嘛呀&#x1f388;&#x1f388; &#x1f388;&#x1f388;所属专栏&#xff1a;python爬虫学习&#x1f388;&#x1f388; ✨✨谢谢大家捧场&#xff0c;祝屏幕前的小伙伴们每天都有好运相伴左右&#xff0c;一定要天天…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

day36-多路IO复用

一、基本概念 &#xff08;服务器多客户端模型&#xff09; 定义&#xff1a;单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用&#xff1a;应用程序通常需要处理来自多条事件流中的事件&#xff0c;比如我现在用的电脑&#xff0c;需要同时处理键盘鼠标…...