深度学习基础模型之Mamba
Mamba模型简介
问题:许多亚二次时间架构(运行时间复杂度低于O(n^2),但高于O(n)的情况)(例如线性注意力、门控卷积和循环模型以及结构化状态空间模型(SSM))已被开发出来,以解决 Transformer 在长序列上的计算效率低下问题,但此类模型的一个关键弱点是它们无法执行基于内容的推理
1. 模型架构
模型简单理解(特殊的门控RNN网络):线性层+门控+选择性SSM的组合

2. 模型特点
2.1 选择性机制

Δ \Delta Δ 、A、B、C应该是SSM中的可学习参数
- 根据输入参数化 SSM 参数来设计一种简单的选择机制,这使得模型能够过滤掉不相关的信息并无限期地记住相关信息。
这里作者认为(研究动机):‘序列建模的一个基本问题是将上下文压缩成更小的状态。事实上,我们可以从这个角度来看待流行序列模型的权衡。例如,注意力既有效又低效,因为它明确地根本不压缩上下文。自回归推理需要显式存储整个上下文(即KV缓存),这直接导致Transformers的线性时间推理和二次时间训练缓慢。’

- 序列模型的效率与有效性权衡的特征在于它们压缩状态的程度:高效模型必须具有较小的状态,而有效模型必须具有包含上下文中所有必要信息的状态。反过来,我们提出构建序列模型的基本原则是选择性:或关注或过滤掉序列状态输入的上下文感知能力。
2.2 硬件算法
算法通过扫描而不是卷积来循环计算模型,但不会具体化扩展状态,计算速度比所有先前的 SSM 模型提升三倍。
代码调用
import torch
from mamba_ssm import Mambabatch, length, dim = 2, 64, 16
x = torch.randn(batch, length, dim).to("cuda")
model = Mamba(# This module uses roughly 3 * expand * d_model^2 parametersd_model=dim, # Model dimension d_modeld_state=16, # SSM state expansion factord_conv=4, # Local convolution widthexpand=2, # Block expansion factor
).to("cuda")
y = model(x)
print(x.shape)
print(y.shape)
assert y.shape == x.shape
总结
这项基础性模型研究旨在解决transformer模型的长序列数据计算效率低的问题,其解决方法的动机:利用选择性机制实现有效特征的提取。个人理解为通过有效特征信息的选择实现知识提取(信息压缩),这让我联想到,最初的VGG语义分割网络结构设计其实类似于模拟知识特征的压缩与抽取,但后来发现这种方式会损失边缘信息,因此提出了U-net架构,再进一步卷积的方式无法有效估计全局上下文信息的联系,进而提出注意力机制来解决这一问题。
从技术与文章写作的角度来看,问题的发展似乎从知识压缩->细节特征提取->全局信息整合,到Mamba貌似是在全局信息整合基础上在进行一次有效信息的抽取,进而使模型从数据中提取根据代表性的特征。整体突出一点:深度学习也是一个特征工程,利用模型来替换原有的手工设计的特征
- 详细代码链接
- 相关模型应用案例:U-Mamba

相关文章:
深度学习基础模型之Mamba
Mamba模型简介 问题:许多亚二次时间架构(运行时间复杂度低于O(n^2),但高于O(n)的情况)(例如线性注意力、门控卷积和循环模型以及结构化状态空间模型(SSM))已被开发出来,以解决 Transformer 在长…...
Topaz Video AI for Mac v5.0.0激活版 视频画质增强软件
Topaz Video AI for Mac是一款功能强大的视频处理软件,专为Mac用户设计,旨在通过人工智能技术为视频编辑和增强提供卓越的功能。这款软件利用先进的算法和深度学习技术,能够自动识别和分析视频中的各个元素,并进行智能修复和增强&…...
解决WordPress文章的段落首行自动空两格的问题
写文章时,段落首行都会空两格,可是WordPress自带的编辑器却没有考虑到这一点,导致发布的文章首行都是顶格的,看起来很不习惯。 我们通常的解决方法都是在发布文章时把编辑器切换到“文本”模式,然后再在首行手动键入两…...
RISC-V单板计算机模拟和FPGA板多核IP实现
🎯要点 🎯使用单板计算机 Visionfive 2 或模拟器测试RISC-V汇编🎯RISC-V汇编加载和算术。🎯使用GNU MAKE汇编RISC-V指令,ESP32使用CMake编译执行指令。🎯RISC-V汇编功能和使用释义:控制指令&am…...
Mojo编程语言案例及介绍
Mojo是一种新兴的编程语言,它结合了现代编程范式与简洁易读的语法,为开发者提供了一个强大且高效的开发工具。以下将详细介绍Mojo编程语言的特性,并通过一个实际案例来展示Mojo的应用。 一、Mojo编程语言介绍 Mojo编程语言的设计理念是“简单…...
【Python面试题收录】Python中有哪些方法交换两个变量的值?至少给出三种方法。
一、使用临时变量 # 定义原始变量 a 10 b 20# 直接交换,Python会一次性执行两个赋值操作 a, b b, a# 无需额外变量,a 和 b 的值已经交换 print(a) # 输出: 20 print(b) # 输出: 10 二、利用元组解包特性(不使用临时变量,推荐…...
MySQL核心命令详解与实战,一文掌握MySQL使用
文章目录 文章简介演示库表创建数据库表选择数据库删除数据库创建表删除表向表中插入数据更新数据删除数据查询数据WHERE 操作符聚合函数LIKE 子句分组 GROUP BY HAVINGORDER BY(排序) 语句LIMIT 操作符 分页查询多表查询-联合查询 UNION 操作符多表查询-连接的使用-JOIN语句编…...
基于Springboot + MySQL + Vue 大学新生宿舍管理系统 (含源码)
目录 📚 前言 📑摘要 📑操作流程 📚 系统架构设计 📚 数据库设计 💬 管理员信息属性 💬 学生信息实体属性 💬 宿舍安排信息实体属性 💬 卫生检查信息实体属性 &…...
vulnhub pWnOS v2.0通关
知识点总结: 1.通过模块来寻找漏洞 2.msf查找漏洞 3.通过网站源代码,查看模块信息 环境准备 攻击机:kali2023 靶机:pWnOS v2.0 安装地址:pWnOS: 2.0 (Pre-Release) ~ VulnHub 在安装网址中看到,该靶…...
leetcode热题100.数据流的中位数
作者:晓宜 🌈🌈🌈 个人简介:互联网大厂Java准入职,阿里云专家博主,csdn后端优质创作者,算法爱好者 ❤️❤️❤️ 你的关注是我前进的动力😊 Problem: 295. 数据流的中位数…...
C 从函数返回指针
我们已经了解了 C 语言中如何从函数返回数组,类似地,C 允许您从函数返回指针。为了做到这点,您必须声明一个返回指针的函数,如下所示: int * myFunction() { . . . }另外,C 语言不支持在调用函数时返回局部…...
(文章复现)考虑分布式电源不确定性的配电网鲁棒动态重构
参考文献: [1]徐俊俊,吴在军,周力,等.考虑分布式电源不确定性的配电网鲁棒动态重构[J].中国电机工程学报,2018,38(16):4715-47254976. 1.摘要 间歇性分布式电源并网使得配电网网络重构过程需要考虑更多的不确定因素。在利用仿射数对分布式电源出力的不确定性进行合…...
蓝桥杯第八届c++大学B组详解
目录 1.购物单 2.等差素数列 3.承压计算 4.方格分割 5.日期问题 6.包子凑数 7.全球变暖 8.k倍区间 1.购物单 题目解析:就是将折扣字符串转化为数字,进行相加求和。 #include<iostream> #include<string> #include<cmath> usin…...
小于n的最大数 Leetcode 902 Numbers At Most N Given Digit Set
这两个问题的本质就是一个棵树,然后根据n对树做剪枝。难点在于剪的时候边界条件有些坑,get_lower_largest_digit_dic是这两个题目的共同点 题目一: 小于n的最大数 算法题目:小于n的最大数 问题描述:给一个数组nums[5…...
Leetcode刷题-数组(二分法、双指针法、窗口滑动)
数组 1、二分法 704. 二分查找 - 力扣(LeetCode) 需要注意区间的问题。首先在最外面的循环判断条件是left<right。那就说明我们区间规定的范围就是【left,right】 属于是左闭右闭!!!!!&…...
STM32学习和实践笔记(4): 分析和理解GPIO_InitTypeDef GPIO_InitStructure (b)
继续上篇博文:STM32学习和实践笔记(4): 分析和理解GPIO_InitTypeDef GPIO_InitStructure (a)-CSDN博客 往下写, 为什么:当GPIO_InitStructure.GPIO_PinGPIO_Pin_0 ; 时,其实就是将对应的该引脚的寄存器地…...
数据仓库——事实表
数据仓库基础笔记思维导图已经整理完毕,完整连接为: 数据仓库基础知识笔记思维导图 事实表 事务事实表 事务事实表用于跟踪事件,通过存储事实和与之关联的维度细节,允许单独或聚集地研究行为。粒度稀疏性包含可加事实 无事实的…...
人工智能常用的编程语言有哪些?
人工智能常用的编程语言包括Python、Java、C、R、Lisp和Prolog等。具体选择取决于项目需求、技术背景和性能要求。 Python是AI领域的明星语言,由于其简洁易懂的语法、丰富的库支持以及庞大的社区资源,适用于机器学习、深度学习和自然语言处理等领域。 …...
【Leetcode每日一题】模拟 - 提莫攻击(难度⭐)(45)
1. 题目解析 题目链接:495. 提莫攻击 2.算法原理 一、分情况讨论 要计算中毒的总时长,我们需要考虑时间点之间的差值,并根据这些差值来确定中毒的实际持续时间。 情况一:差值大于等于中毒时间 假设你的角色在时间点A中毒&#…...
OPPO云VPC网络实践
1 OPPO 云网络现状 随着OPPO业务的快速发展,OPPO云规模增长迅速。大规模虚拟实例的弹性伸缩、低延时需求对网络提出了诸多挑战。原有基于VLAN搭建的私有网络无法解决这些问题,给网络运维和业务的快速上线带来了挑战。 梳理存在的主要问题如下…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...
Qt 事件处理中 return 的深入解析
Qt 事件处理中 return 的深入解析 在 Qt 事件处理中,return 语句的使用是另一个关键概念,它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别:不同层级的事件处理 方…...
