蓝桥杯:全球变暖(python,BFS,DFS)(栈溢出的处理办法)
图论的经典题型,深度优先搜索和广度优先搜索都可以,但是本题推荐使用广度优先搜索(类似的题最好都用广度优先搜索),因为使用深度优先搜索会爆栈(栈溢出)。本篇博客两种方法都进行讲解,也会讲解栈溢出的解决方案。
题目:
题目链接:全球变暖
你有一张某海域 N×N 像素的照片,”.”表示海洋、”#”表示陆地,如下所示:
.......
.##....
.##....
....##.
..####.
...###.
.......
其中”上下左右”四个方向上连在一起的一片陆地组成一座岛屿,例如上图就有 2 座岛屿。
由于全球变暖导致了海面上升,科学家预测未来几十年,岛屿边缘一个像素的范围会被海水淹没。
具体来说如果一块陆地像素与海洋相邻(上下左右四个相邻像素中有海洋),它就会被淹没。
例如上图中的海域未来会变成如下样子:
.......
.......
.......
.......
....#..
.......
.......
请你计算:依照科学家的预测,照片中有多少岛屿会被完全淹没。
输入格式
第一行包含一个整数N。
以下 N 行 N 列,包含一个由字符”#”和”.”构成的 N×N 字符矩阵,代表一张海域照片,”#”表示陆地,”.”表示海洋。照片保证第 1 行、第 1 列、第 N 行、第 N 列的像素都是海洋。
输出格式
一个整数表示答案。
数据范围
1≤N≤1000
输入样例1:
7
.......
.##....
.##....
....##.
..####.
...###.
.......
输出样例1:
1
输入样例2:
9
.........
.##.##...
.#####...
.##.##...
.........
.##.#....
.#.###...
.#..#....
.........
输出样例2:
1
思路:
接触过图论的同学都知道 连通块问题,是基础搜索。用DFS或BFS都行:遍历一个连通块(找到这个连通块中所有的’#‘,并标记已经搜过,不用再搜);再遍历下一个连通块…;遍历完所有连通块,统计有多少个连通块。
本题是在寻找连通块的基础上进行了进阶(问题1),还要找寻被淹没的连通块(问题2)。(这里分步讨论)
问题1很好解决,那么问题2该如何计数呢?
方法一:BFS:
在统计连通块的基础上我们可以定义两个变量 total 和 bound
total 用来统计每个连通块上有多少块土地,
bound 用来统计在每个连通块上有多少土地是紧挨着水的(上,下,左,右任意一边挨水都算),
如果 total = bound 则表明该连通块会完全淹没(因为所有土地都紧靠水)。
这个思路想出来了问题就很好解决了,下面直接套用模板就行
代码及详细注释:
from collections import deque# 输入迷宫大小
n = int(input())
a = []
# 读取迷宫
for i in range(n):path = list(input())a.append(path)# 记录访问情况
vis = [[False] * n for _ in range(n)]
# 定义四个方向
dirs = [[0,1],[0,-1],[1,0],[-1,0]]def bfs(x, y):global total, boundq = deque()vis[x][y] = Trueq.append([x, y])while q:curx, cury = q.popleft()total += 1is_bound = Falsefor dir in dirs:next_x = curx + dir[0]next_y = cury + dir[1]# 边界检查if next_x < 0 or next_y < 0 or next_x >= n or next_y >= n:continue# 已访问过的点跳过if vis[next_x][next_y] == True:continue# 如果是水域,标记为边界点并跳过if a[next_x][next_y] == '.':is_bound = Truecontinuevis[next_x][next_y] = Trueq.append([next_x, next_y])if is_bound:bound += 1cnt = 0
# 遍历整个迷宫
for i in range(n):for j in range(n):# 未访问过的岛屿开始进行搜索if vis[i][j] == False and a[i][j] == '#':total = 0bound = 0bfs(i, j)# 如果所有土地都紧靠水,计数加一if total == bound:cnt += 1print(cnt)
方法二:DFS
dfs解决问题二的时候有个很巧妙的方法,就是在统计连通块的时候多加一个判断语句(判断当前岛屿是否被完全淹没),就是判断上下左右是否为陆地,如果是陆地的话,最后计数不算该连通块。
但是dfs很大的问题就是栈溢出问题,也就是爆栈,虽然 dfs 比 bfs 写起来简单但不太推荐大家在打比赛的时候用(爆栈几率小但也不敢赌啊)
解决爆栈问题也比较简单,对递归深度进行限制即可,使用sys.setrecursionlimit()函数
在Python中,sys.setrecursionlimit()函数用于设置递归深度限制。递归深度指的是递归函数嵌套调用的层数。通过调用sys.setrecursionlimit()函数,可以设置Python解释器允许的最大递归深度,从而避免递归调用导致的栈溢出错误。
代码及详细注释:
import sys
# 设置递归深度限制
sys.setrecursionlimit(60000)# 读取输入的迷宫大小
n = int(input())# 读取迷宫地图
a = []
for i in range(n):path = list(input())a.append(path)# 记录访问状态
vis = [[False] * n for _ in range(n)]# 定义四个方向
dirs = [[0, 1], [0, -1], [1, 0], [-1, 0]]# 深度优先搜索函数
def dfs(x, y):global flagvis[x][y] = True# 判断当前岛屿是否被完全淹没if a[x][y + 1] == "#" and a[x][y - 1] == "#" and a[x + 1][y] == "#" and a[x - 1][y] == "#":flag = 1# 遍历四个方向for dir in dirs:next_x = x + dir[0]next_y = y + dir[1]if next_x < 0 or next_y < 0 or next_x >= n or next_y >= n:continueif vis[next_x][next_y] == True:continueif a[next_x][next_y] == '.':continuedfs(next_x, next_y)# 统计未被淹没的岛屿数量
cnt = 0
for i in range(n):for j in range(n):if vis[i][j] == False and a[i][j] == '#':flag = 0dfs(i, j)if flag == 0:cnt += 1
# 输出结果
print(cnt)
总结:
本题看着很简单,但是统计问题解决实现起来还是有点绕的。
相关文章:
蓝桥杯:全球变暖(python,BFS,DFS)(栈溢出的处理办法)
图论的经典题型,深度优先搜索和广度优先搜索都可以,但是本题推荐使用广度优先搜索(类似的题最好都用广度优先搜索),因为使用深度优先搜索会爆栈(栈溢出)。本篇博客两种方法都进行讲解࿰…...
Qt C++ | Qt 元对象系统、信号和槽及事件(第一集)
01 元对象系统 一、元对象系统基本概念 1、Qt 的元对象系统提供的功能有:对象间通信的信号和槽机制、运行时类型信息和动态属性系统等。 2、元对象系统是 Qt 对原有的 C++进行的一些扩展,主要是为实现信号和槽机制而引入的, 信号和槽机制是 Qt 的核心特征。 3、要使用元…...
Python 抽象类
在Python的抽象基类(ABC)中,方法并不是必须全部是抽象方法。抽象基类可以同时包含抽象方法和具体方法。抽象类中可以有抽象方法也可以定义具体方法 具体来说: 抽象方法: 使用abc.abstractmethod装饰器标记的方法是抽象方法。抽象方法没有方法体,只有方法签名。抽象方法必须在具…...
达梦数据库自动备份(全库)+还原(全库) 控制台
一 前提 1.安装达梦数据库DB8(请参照以前文章) 我的数据库安装目录是 /app/dmDB8 2.已创建实例 (请参照上一篇文章) 二 准备测试数据 三 自动备份步骤 1.开启归档模式 开启DM管理工具管理控制台 弹不出来工具的 输入命令 xhost 第一步 将服务器转换为配置状态 右键-&g…...
android AndroidAutoSize 取消第三方库适配问题(两个步骤)
比如第三方库的Activity是:PictureSelectorSupporterActivity、PictureSelectorTransparentActivity、CropImageActivity 1.在自定义Application 的 onCreate 方法设置: Overridepublic void onCreate() {super.onCreate();this.mAppthis;registerActi…...
【Java 多线程】从源码出发,剖析Threadlocal的数据结构
文章目录 exampleset(T value)createMap(t, value);set(ThreadLocal<?> key, Object value)ThreadLocalMap和Thread的关系 全貌 ThreadLocal是个很重要的多线程类,里面数据结构的设计很有意思,很巧妙。但是我们平时使用它的时候常常容易对它的使用…...
Sy6 编辑器vi的应用(+shell脚本3例子)
实验环境: 宿主机为win11,网络:10.255.50.5 6389 WSL2 ubuntu 目标机的OS:Ubuntu 内核、版本如下: linuxpeggy0223:/$ uname -r 5.15.146.1-microsoft-standard-WSL2 linuxpeggy0223:/$ cat /proc/version Linux vers…...
把标注数据导入到知识图谱
文章目录 简介数据导入Doccano标注数据,导入到Neo4j寻求帮助 简介 团队成员使用 Doccano 标注了一些数据,包括 命名实体识别、关系和文本分类 的标注的数据; 工作步骤如下: 首先将标注数据导入到Doccano,查看一下标注…...
【前端基础】什么是类数组对象,类数组对象转换成数组的方法
类数组对象(array-like object)是指在 JavaScript 中具有类似数组的特征但不是真正的数组的对象。这些对象具有类似数组的特性,例如有一个 length 属性和通过索引访问元素的能力,但它们不具备数组对象的所有方法和特性。 什么是类…...
Python快速入门系列-8(Python数据分析与可视化)
第八章:Python数据分析与可视化 8.1 数据处理与清洗8.1.1 数据加载与查看8.1.2 数据清洗与处理8.1.3 数据转换与整理8.2 数据可视化工具介绍8.2.1 Matplotlib8.2.2 Seaborn8.2.3 Plotly8.3 数据挖掘与机器学习简介8.3.1 Scikit-learn8.3.2 TensorFlow总结在本章中,我们将探讨…...
双非硕转测试之Java学习笔记(一):集合
Java学习-----集合 简单概括单列集合--collectionlist接口:vector类:LinkedList类:set接口:HasSet类:LinkedHashSet类: 双列集合--MapMap接口:HashMap类:HashTable类:Pro…...
zabbix源码安装
目录 一.安装php和nginx客户端环境 二.修改php配置 三.修改nginx配置文件 四.下载并编译zabbix 五.创建zabbix需要的用户及组 六.安装编译需要的依赖 七.配置zabbix文件 八.数据库配置 九.配置zabbix 十.web界面部署 十一.遇到无法创建配置文件 十二.登录zabbix 前…...
计算机视觉之三维重建(5)---双目立体视觉
文章目录 一、平行视图1.1 示意图1.2 平行视图的基础矩阵1.3 平行视图的极几何1.4 平行视图的三角测量 二、图像校正三、对应点问题3.1 相关匹配法3.2 归一化相关匹配法3.3 窗口问题3.4 相关法存在的问题3.5 约束问题 一、平行视图 1.1 示意图 如下图即是一个平行视图。特点&a…...
计算机网络-TCP/IP 网络模型
TCP/IP网络模型各层的详细描述: 应用层:应用层为应用程序提供数据传输的服务,负责各种不同应用之间的协议。主要协议包括: HTTP:超文本传输协议,用于从web服务器传输超文本到本地浏览器的传送协议。FTP&…...
算法训练营第29天|LeetCode 491.递增子序列 46.全排列 47.全排列Ⅱ
LeetCode 491.递增子序列 题目链接: LeetCode 491.递增子序列 解题思路: 用哈希集合进行去重,同一树层不能取重复元素。 代码: class Solution { public:vector<vector<int>>result;vector<int>path;void…...
Ubuntu服务器搭建 - 环境篇
Ubuntu服务器搭建 - 环境篇 基于腾讯云服务器 - Ubuntu 20.04 LTS 一、安装 - MySQL 1.1 概述 MySQL安装方式有三种: 1. 使用Ubuntu 包管理工具 apt安装 2. 使用MySQL官方APT存储库安装 3. 使用MySQL官方二进制发行版安装 1.2 安装 MySQL 使用MySQL官方APT存储库安装 $ wget…...
深度学习基础模型之Mamba
Mamba模型简介 问题:许多亚二次时间架构(运行时间复杂度低于O(n^2),但高于O(n)的情况)(例如线性注意力、门控卷积和循环模型以及结构化状态空间模型(SSM))已被开发出来,以解决 Transformer 在长…...
Topaz Video AI for Mac v5.0.0激活版 视频画质增强软件
Topaz Video AI for Mac是一款功能强大的视频处理软件,专为Mac用户设计,旨在通过人工智能技术为视频编辑和增强提供卓越的功能。这款软件利用先进的算法和深度学习技术,能够自动识别和分析视频中的各个元素,并进行智能修复和增强&…...
解决WordPress文章的段落首行自动空两格的问题
写文章时,段落首行都会空两格,可是WordPress自带的编辑器却没有考虑到这一点,导致发布的文章首行都是顶格的,看起来很不习惯。 我们通常的解决方法都是在发布文章时把编辑器切换到“文本”模式,然后再在首行手动键入两…...
RISC-V单板计算机模拟和FPGA板多核IP实现
🎯要点 🎯使用单板计算机 Visionfive 2 或模拟器测试RISC-V汇编🎯RISC-V汇编加载和算术。🎯使用GNU MAKE汇编RISC-V指令,ESP32使用CMake编译执行指令。🎯RISC-V汇编功能和使用释义:控制指令&am…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
