当前位置: 首页 > news >正文

yolov8训练流程

训练代码

from ultralytics import YOLO# Load a model
model = YOLO('yolov8n.yaml')  # build a new model from YAML
model = YOLO('yolov8n.pt')  # load a pretrained model (recommended for training)
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights# Train the model
results = model.train(data='coco128.yaml', epochs=100, imgsz=640)
print(results)

数据集路径

ultralytics/cfg/datasets/coco.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset https://cocodataset.org by Microsoft
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco  ← downloads here (20.1 GB)# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco128 # dataset root dir
train: images/train2017 # train images (relative to 'path') 128 images
val: images/train2017 # val images (relative to 'path') 128 images
test: # test images (optional)https://competitions.codalab.org/competitions/20794# Classes
names:0: person1: bicycle2: car3: motorcycle4: airplane5: bus6: train7: truck8: boat9: traffic light10: fire hydrant11: stop sign12: parking meter13: bench14: bird15: cat16: dog17: horse18: sheep19: cow20: elephant21: bear22: zebra23: giraffe24: backpack25: umbrella26: handbag27: tie28: suitcase29: frisbee30: skis31: snowboard32: sports ball33: kite34: baseball bat35: baseball glove36: skateboard37: surfboard38: tennis racket39: bottle40: wine glass41: cup42: fork43: knife44: spoon45: bowl46: banana47: apple48: sandwich49: orange50: broccoli51: carrot52: hot dog53: pizza54: donut55: cake56: chair57: couch58: potted plant59: bed60: dining table61: toilet62: tv63: laptop64: mouse65: remote66: keyboard67: cell phone68: microwave69: oven70: toaster71: sink72: refrigerator73: book74: clock75: vase76: scissors77: teddy bear78: hair drier79: toothbrush# Download script/URL (optional)
download: |from ultralytics.utils.downloads import downloadfrom pathlib import Path# Download labelssegments = True  # segment or box labelsdir = Path(yaml['path'])  # dataset root dirurl = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')]  # labelsdownload(urls, dir=dir.parent)# Download dataurls = ['http://images.cocodataset.org/zips/train2017.zip',  # 19G, 118k images'http://images.cocodataset.org/zips/val2017.zip',  # 1G, 5k images'http://images.cocodataset.org/zips/test2017.zip']  # 7G, 41k images (optional)download(urls, dir=dir / 'images', threads=3)

数据集格式
安装labelme

conda create --name=labelme python=3
conda activate labelme
pip install labelme

启动

labelme  # just open gui

相关文章:

yolov8训练流程

训练代码 from ultralytics import YOLO# Load a model model YOLO(yolov8n.yaml) # build a new model from YAML model YOLO(yolov8n.pt) # load a pretrained model (recommended for training) model YOLO(yolov8n.yaml).load(yolov8n.pt) # build from YAML and tr…...

Java基础学习: Forest - 极简 HTTP 调用 API 框架

文章目录 一、介绍参考: 一、介绍 Forest是一个开源的Java HTTP客户端框架,专注于简化HTTP客户端的访问。它是一个高层的、极简的轻量级HTTP调用API框架,通过Java接口和注解的方式,将复杂的HTTP请求细节隐藏起来,使HT…...

Pandas Dataframe合并连接Join和merge 参数讲解

文章目录 函数与参数分析otheronhowlsuffix, rsuffix, suffixesleft_index, right_index 函数与参数分析 在pandas中主要有两个函数可以完成table之间的join Join的函数如下: DataFrame.join(other, onNone, how‘left’, lsuffix‘’, rsuffix‘’, sortFalse, v…...

ABC318 F - Octopus

解题思路 对于每个宝藏维护个区间,答案一定在这些区间中对于每个区间的端点由小到大排序对于每个点进行判断,若当前位置合法,则该点一定为一个右端点则该点到前一个端点之间均为合法点若前一个点不合法,则一定是某一个区间限制的…...

Docker实战教程 第3章 Dockerfile

4-2 通过dockerfile制作镜像 需求 制作一个具有ping ip ifconfig vim 这些命令工具的一个nginx镜像,通过dockerfile完成STEP1 : 写一个Dockerfile FROM nginx # 基于一个基础镜像 RUN lsstep2 docker build . -f 指定使用的dockerfile来生成镜像-t 指定镜像名…...

JSON在量化交易系统中的应用

JSON在量化交易系统中的应用场景 数据传输和存储:JSON可以将交易数据以结构化的方式进行编码,并将其转换为字符串进行传输和存储。这样可以方便地在不同的系统之间传递数据,并且可以保持数据的完整性和一致性。 API通信:量化交易…...

x-cmd-pkg | broot 是基于 Rust 开发的一个终端文件管理器

简介 broot 是基于 Rust 开发的一个终端文件管理器,它设计用于帮助用户在终端中更轻松地管理文件和目录,使用树状视图探索文件层次结构、操作文件、启动操作以及定义您自己的快捷方式。 同时它还集成了 ls, tree, find, grep, du, fzf 等工具的常用功能…...

设置asp.net core WebApi函数请求参数可空的两种方式

以下面定义的asp.net core WebApi函数为例,客户端发送申请时,默认三个参数均为必填项,不填会报错,如下图所示: [HttpGet] public string GetSpecifyValue(string param1,string param2,string param3) {return $"…...

Vue.js组件精讲 开篇:Vue.js的精髓——组件

写在前面 Vue.js,无疑是当下最火热的前端框架 Almost,而 Vue.js 最精髓的,正是它的组件与组件化。写一个 Vue 工程,也就是在写一个个的组件。 业务场景是千变万化的,而不变的是 Vue.js 组件开发的核心思想和使用技巧…...

R语言中的常用数据结构

目录 R对象的基本类型 R对象的属性 R的数据结构 向量 矩阵 数组 列表 因子 缺失值NA 数据框 R的数据结构总结 R语言可以进行探索性数据分析,统计推断,回归分析,机器学习,数据产品开发 R对象的基本类型 R语言对象有五…...

基于Python的微博旅游情感分析、微博舆论可视化系统

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…...

机器学习的模型校准

背景知识 之前一直没了解过模型校准是什么东西,最近上班业务需要看了一下: 模型校准是指对分类模型进行修正以提高其概率预测的准确性。在分类模型中,预测结果通常以类别标签形式呈现(例如,0或1)&#xf…...

0.17元的4位数码管驱动芯片AiP650,支持键盘,还是无锡国家集成电路设计中心某公司的

推荐原因:便宜的4位数码管驱动芯片 只要0.17元,香吗?X背景的哦。 2 线串口共阴极 8 段 4 位 LED 驱动控制/7*4 位键盘扫描专用电路 AIP650参考电路图 AIP650引脚定义...

【C++】编程规范之内存规则

在高质量编程中,内存管理是一个至关重要的方面。主要有以下原则: 内存分配后需要检查是否成功:内存分配可能会失败,特别是在内存紧张的情况下。因此,在分配内存后,应该检查分配是否成功。 int* ptr new …...

并发编程之线程池的应用以及一些小细节的详细解析

线程池在实际中的使用 实际开发中,最常用主要还是利用ThreadPoolExecutor自定义线程池,可以给出一些关键的参数来自定义。 在下面的代码中可以看到,该线程池的最大并行线程数是5,线程等候区(阻塞队列)是3,即…...

基于JSP的农产品供销服务系统

背景 互联网的迅猛扩张彻底革新了全球各类组织的运营模式。自20世纪90年代起,中国的政府机关和各类企业便开始探索利用网络系统来处理管理事务。然而,早期的网络覆盖范围有限、用户接受度不高、互联网相关法律法规不完善以及技术开发不够成熟等因素&…...

redis之主从复制、哨兵模式

一 redis群集有三种模式 主从复制: 主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。 主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。 缺陷: 故障恢复无法自动化&…...

【随笔】Git 基础篇 -- 分支与合并 git rebase(十)

💌 所属专栏:【Git】 😀 作  者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! 💖 欢迎大…...

图像识别技术在体育领域的应用

图像识别技术在体育领域的应用是一个充满创新和挑战的研究方向。随着计算机视觉和人工智能技术的快速发展,图像识别技术已经在体育领域展现出广泛的应用潜力和实际价值。以下是一些图像识别技术在体育领域的具体应用: 运动员表现分析: 图像识…...

【项目新功能开发篇】开发编码

作者介绍:本人笔名姑苏老陈,从事JAVA开发工作十多年了,带过大学刚毕业的实习生,也带过技术团队。最近有个朋友的表弟,马上要大学毕业了,想从事JAVA开发工作,但不知道从何处入手。于是&#xff0…...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如&#xff0c;已知表达式3*52&#xff0c;依照子表达式的求值顺序&#xff0c;有两种可能的结果&#xff0c;如图9-3所示。 如果乘法先执行&#xff0c;结果是17。如果5…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...