当前位置: 首页 > news >正文

【拓扑空间】示例及详解1

例1 

度量空间(X,d)的任意两球形邻域的交集是若干球形邻域的并集

Proof:

任取空间(X,d)的两个球形邻域B(x_1,\varepsilon _1)B(x_2,\varepsilon _2),令U=B(x_1,\varepsilon _1)\cap B(x_2,\varepsilon _2)

任取x\in U,令\varepsilon_x=min\left \{ \varepsilon_1-d(x_1,x), \varepsilon_2-d(x_2,x) \right \}

\Rightarrow B(x,\varepsilon_x)\subseteq U

\Rightarrow U=\bigcup_{x\in U}B(x,\varepsilon_x)

球形领域B(x_0,\varepsilon )=\left \{ x \in X : d(x,x_0)< \varepsilon,x_0\in X,\varepsilon >0 \right \}

例2

规定X的子集族\tau_d=\left \{ U:U\ is \ union \ of\ spherical \ neighborhoods \right \},证明\tau_d是X上的一个拓扑

Proof:

1.\varnothing \in \tau_d

X=\bigcup_{x\in X}B(x,\varepsilon_x) \in \tau_d

2.\forall u_1,u_2 \in \tau_d, u_1\cup u_2 \ is \ union\ of\ spherical\ neighboorhoods,u_1\cup u_2\in\tau_d

(若干个球形邻域的并集都是\tau_d的元素,元素间的任意并依旧是若干个球形邻域的并集,故对任意并封闭)

3.\begin{gathered}\exists u_1,u_2\in\tau_d,u_1=\bigcup_{\alpha }B(x_{\alpha},\varepsilon_{\alpha}),u_2=\bigcup_{\beta}B(x_{\beta},\varepsilon_{\beta}).\end{gathered}

\begin{gathered} u_1\cap u_2=\left(\bigcup_\alpha B(x_\alpha,\varepsilon_\alpha)\right)\bigcap\left(\bigcup_\beta B(x_\beta,\varepsilon_\beta)\right) \\ =\bigcup_{\alpha,\beta}\left(B(x_{a},\varepsilon_{a})\bigcap B(x_{\beta},\varepsilon_{\beta})\right) \end{gathered}

let \ U =B(x_{a},\varepsilon_{a})\bigcap B(x_{\beta},\varepsilon_{\beta})

\forall x \in U,let \ \varepsilon_x=min\left \{ d(x,x_\alpha),d(x,x_\beta) \right \}

then,U=\bigcup_{x\in U}B(x,\varepsilon_x)

\begin{gathered} then,u_1\cap u_2=\bigcup_{\alpha,\beta}\left(\bigcup_{x\in U}B(x,\varepsilon_x)\right) \end{gathered},so \ u_1\cap u_2 \in \tau_d

therefore \ \tau_d \ is \ a \ topo \ in\ X

拓扑:=

1.X,\varnothing \in \tau

2.任意并封闭

3.有限交封闭

\left(\bigcup_\alpha B(x_\alpha,\varepsilon_\alpha)\right)\bigcap\left(\bigcup_\beta B(x_\beta,\varepsilon_\beta)\right) =\bigcup_{\alpha,\beta}\left(B(x_{a},\varepsilon_{a})\bigcap B(x_{\beta},\varepsilon_{\beta})\right)

一般称\tau_d为X上由度量d决定的度量拓扑

每个度量空间都可以看成具有度量拓扑的拓扑空间,从而欧氏空间E^{n}也是拓扑空间,其度量拓扑称为欧氏拓扑。 

从这个意义上讲,拓扑空间是欧氏空间和度量空间的推广,拓扑公理也是从度量空间的开集的基本性质中抽象出来的。

​​​​​​​

相关文章:

【拓扑空间】示例及详解1

例1 度量空间的任意两球形邻域的交集是若干球形邻域的并集 Proof&#xff1a; 任取空间的两个球形邻域、&#xff0c;令 任取,令 球形领域 例2 规定X的子集族,证明是X上的一个拓扑 Proof&#xff1a; 1. 2., &#xff08;若干个球形邻域的并集都是的元素&#xff0c;元素…...

linux安装jdk8

上传到某个目录&#xff0c;例如&#xff1a;/usr/local/ tar -xvf jdk-8u144-linux-x64.tar.gz配置环境变量&#xff1a; export JAVA_HOME/usr/local/java export PATH$PATH:$JAVA_HOME/bin设置环境变量&#xff1a; source /etc/profile...

Spring重点知识(个人整理笔记)

目录 1. 为什么要使用 spring&#xff1f; 2. 解释一下什么是 Aop&#xff1f; 3. AOP有哪些实现方式&#xff1f; 4. Spring AOP的实现原理 5. JDK动态代理和CGLIB动态代理的区别&#xff1f; 6. 解释一下什么是 ioc&#xff1f; 7. spring 有哪些主要模块&#xff1f;…...

HTML基础知识详解(上)(如何想知道html的全部基础知识点,那么只看这一篇就足够了!)

前言&#xff1a;在学习前端基础时&#xff0c;必不可少的就是三大件&#xff08;html、css、javascript &#xff09;&#xff0c;而HTML&#xff08;超文本标记语言——HyperText Markup Language&#xff09;是构成 Web 世界的一砖一瓦&#xff0c;它定义了网页内容的含义和…...

如何借助Idea创建多模块的SpringBoot项目

目录 1.1、前言1.2、开发环境1.3、项目多模块结构1.4、新建父工程1.5、创建子模块1.6、编辑父工程的pom.xml文件 1.1、前言 springmvc项目&#xff0c;一般会把项目分成多个包:controler、service、dao、utl等&#xff0c;但是随着项目的复杂性提高&#xff0c;想复用其他一个模…...

爬虫 新闻网站 并存储到CSV文件 以红网为例 V1.0

爬虫&#xff1a;红网网站&#xff0c; 获取当月指定关键词新闻&#xff0c;并存储到CSV文件 V1.0 目标网站&#xff1a;红网 爬取目的&#xff1a;为了获取某一地区更全面的在红网已发布的宣传新闻稿&#xff0c;同时也让自己的工作更便捷 环境&#xff1a;Pycharm2021&#…...

CentOS 使用 Cronie 实现定时任务

CentOS 使用 Cronie 实现定时任务 文章目录 CentOS 使用 Cronie 实现定时任务一、简介二、基本使用1、常用命令2、使用示例第一步&#xff1a;创建脚本/home/create.sh第二步&#xff1a;添加定时任务第三步&#xff1a;重启 cronie 服务额外&#xff1a;查看 cronie 运行状态定…...

java生成word

两种方案 一、poi-tl生成word <dependency><groupId>com.deepoove</groupId><artifactId>poi-tl</artifactId><version>1.12.1</version> </dependency> public static void main(String[] args) throws Exception {String…...

C语言中的结构体:揭秘数据的魔法盒

前言 在C语言的广阔天地中&#xff0c;结构体无疑是一颗璀璨的明珠。它就像是一个魔法盒&#xff0c;能够容纳各种不同类型的数据&#xff0c;并按我们的意愿进行组合和排列。那么&#xff0c;这个魔法盒究竟有何神奇之处呢&#xff1f;让我们一探究竟。 一、结构体的诞生&…...

Listener

文章目录 ListenerServletContextListenerServletContextAttributeListenerHttpSessionListenerHttpSessionAttributeListenerServletRequestListenerServletRequestAttributeListenerHttpSessionBindingListenerHttpSessionActivationListener Listener Listener 监听器它是 J…...

单细胞RNA测序(scRNA-seq)SRA数据下载及fastq-dumq数据拆分

单细胞RNA测序&#xff08;scRNA-seq&#xff09;入门可查看以下文章&#xff1a; 单细胞RNA测序&#xff08;scRNA-seq&#xff09;工作流程入门 单细胞RNA测序&#xff08;scRNA-seq&#xff09;细胞分离与扩增 1. NCBI查询scRNA-seq SRA数据 NCBI地址&#xff1a; https…...

金蝶Apusic应用服务器 未授权目录遍历漏洞复现

0x01 产品简介 金蝶Apusic应用服务器(Apusic Application Server,AAS)是一款标准、安全、高效、集成并具丰富功能的企业级应用服务器软件,全面支持JakartaEE8/9的技术规范,提供满足该规范的Web容器、EJB容器以及WebService容器等,支持Websocket1.1、Servlet4.0、HTTP2.0…...

成都百洲文化传媒有限公司电商服务的新领军者

在当今数字化时代&#xff0c;电商行业正以前所未有的速度蓬勃发展。在这个大背景下&#xff0c;成都百洲文化传媒有限公司凭借其深厚的行业经验和精湛的专业技能&#xff0c;正迅速崛起为电商服务领域的新领军者。 一、专业引领&#xff0c;成就卓越 作为一家专注于电商服务的…...

从无到有开始创建动态顺序表——C语言实现

顺序表的概念 顺序表的底层结构是数组&#xff0c;对数组的封装&#xff0c;实现了常用的增删改查等接口。在物理结构和逻辑结构都是连续的&#xff0c;物理结构是指顺序表在计算机内存的存储方式&#xff0c;逻辑结构是我们思考的形式&#xff0c;顺序表和数组是类似的&#x…...

Unix 网络编程, Socket 以及bind(), listen(), accept(), connect(), read()write()五大函数简介

Unix网络编程是针对类Unix操作系统&#xff08;包括Linux、BSD以及其他遵循POSIX标准的操作系统&#xff09;进行网络通信开发的技术领域。网络编程涉及创建和管理网络连接、交换数据以及处理不同层次网络协议栈上的各种网络事件。在Unix环境中&#xff0c;网络编程通常涉及到以…...

【附下载】2024全行业数字化转型企业建设解决方案PPT合集

精品推荐&#xff0c;2024全行业数字化转型企业建设解决方案PPT合集&#xff0c;精品PPT源格式共21份。 以下是资料目录&#xff0c;如需下载&#xff0c;请前往星球获取&#xff1a; 1.制造业数字化转型解决方案及应用.pptx 2.医院数字化网络解决方案.pptx 3.食品饮料工厂数字…...

【QT+QGIS跨平台编译】056:【pdal_lepcc+Qt跨平台编译】(一套代码、一套框架,跨平台编译)

点击查看专栏目录 文章目录 一、pdal_lepcc介绍二、pdal下载三、文件分析四、pro文件五、编译实践一、pdal_lepcc介绍 pdal_lepcc 是 PDAL(Point Data Abstraction Library)的一个插件,用于点云数据的压缩。它基于 EPCC(Entwine Point Cloud Compression)算法,提供了对点…...

蓝桥集训之斐波那契数列

蓝桥集训之斐波那契数列 核心思想&#xff1a;矩阵乘法 将原本O(n)的递推算法优化为O(log2n) 构造1x2矩阵f和2x2矩阵a 发现f(n1) f(n) * a 则f(n1) f(1) * an可以用快速幂优化 #include <iostream>#include <cstring>#include <algorithm>using na…...

程序员的工资是多少,和曹操有莫大的关系

曹操是谁大家都知道了吧&#xff0c;他是三国时期的一个有名的大老板&#xff0c;谁知道曹操的工资是多少呢&#xff1f;这个其实也不好说&#xff0c;有时候曹操赚很多的钱&#xff0c;有时候也亏血本&#xff0c;甚至连脑袋都差点掉了。创业不容易啊&#xff0c;曹老板也是如…...

使用Element Plus

1. 官网安装 安装 | Element Plus (gitee.io) 安装&#xff1a; npm install element-plus --save 在main.ts中全局注册ElementPlus并使用 //加入element-plus import ElementPlus from element-plus; //加入element-plus样式 import element-plus/dist/index.css; import…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上&#xff0c;开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识&#xff0c;在 vs 2017 平台上&#xff0c;进行 ASP.NET 应用程序和简易网站的开发&#xff1b;初步熟悉开发一…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...