当前位置: 首页 > news >正文

[flink 实时流基础] 输出算子(Sink)

学习笔记
Flink作为数据处理框架,最终还是要把计算处理的结果写入外部存储,为外部应用提供支持。
image.png


文章目录

      • **连接到外部系统**
      • **输出到文件**
      • 输出到 Kafka
      • 输出到 mysql
      • 自定义 sink

连接到外部系统

Flink的DataStream API专门提供了向外部写入数据的方法:addSink。与addSource类似,addSink方法对应着一个“Sink”算子,主要就是用来实现与外部系统连接、并将数据提交写入的;Flink程序中所有对外的输出操作,一般都是利用Sink算子完成的。
Flink1.12以前,Sink算子的创建是通过调用DataStream的.addSink()方法实现的。
stream.addSink(new SinkFunction(…));
addSink方法同样需要传入一个参数,实现的是SinkFunction接口。在这个接口中只需要重写一个方法invoke(),用来将指定的值写入到外部系统中。这个方法在每条数据记录到来时都会调用。
Flink1.12开始,同样重构了Sink架构,
stream.sinkTo(…)
当然,Sink多数情况下同样并不需要我们自己实现。之前我们一直在使用的print方法其实就是一种Sink,它表示将数据流写入标准控制台打印输出。Flink官方为我们提供了一部分的框架的Sink连接器。如下图所示,列出了Flink官方目前支持的第三方系统连接器:

https://nightlies.apache.org/flink/flink-docs-release-1.18/zh/docs/connectors/datastream/overview/
image.png

我们可以看到,像Kafka之类流式系统,Flink提供了完美对接,source/sink两端都能连接,可读可写;而对于Elasticsearch、JDBC等数据存储系统,则只提供了输出写入的sink连接器。
除Flink官方之外,Apache Bahir框架,也实现了一些其他第三方系统与Flink的连接器。
image.png
除此以外,就需要用户自定义实现sink连接器了。

输出到文件

Flink专门提供了一个流式文件系统的连接器:FileSink,为批处理和流处理提供了一个统一的Sink,它可以将分区文件写入Flink支持的文件系统。
FileSink支持行编码(Row-encoded)和批量编码(Bulk-encoded)格式。这两种不同的方式都有各自的构建器(builder),可以直接调用FileSink的静态方法:

  • 行编码: FileSink.forRowFormat(basePath,rowEncoder)。
  • 批量编码: FileSink.forBulkFormat(basePath,bulkWriterFactory)。
public class SinkFile {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 每个目录中,都有 并行度个数的 文件在写入env.setParallelism(2);// 必须开启checkpoint,否则一直都是 .inprogressenv.enableCheckpointing(2000, CheckpointingMode.EXACTLY_ONCE);DataGeneratorSource<String> dataGeneratorSource = new DataGeneratorSource<>(new GeneratorFunction<Long, String>() {@Overridepublic String map(Long value) throws Exception {return "Number:" + value;}},Long.MAX_VALUE,RateLimiterStrategy.perSecond(1000),Types.STRING);DataStreamSource<String> dataGen = env.fromSource(dataGeneratorSource, WatermarkStrategy.noWatermarks(), "data-generator");// 输出到文件系统FileSink<String> fieSink = FileSink// 输出行式存储的文件,指定路径、指定编码.<String>forRowFormat(new Path("f:/tmp"), new SimpleStringEncoder<>("UTF-8"))// 输出文件的一些配置: 文件名的前缀、后缀.withOutputFileConfig(OutputFileConfig.builder().withPartPrefix("atguigu-").withPartSuffix(".log").build())// 按照目录分桶:如下,就是每个小时一个目录.withBucketAssigner(new DateTimeBucketAssigner<>("yyyy-MM-dd HH", ZoneId.systemDefault()))// 文件滚动策略:  1分钟 或 1m.withRollingPolicy(DefaultRollingPolicy.builder().withRolloverInterval(Duration.ofMinutes(1)).withMaxPartSize(new MemorySize(1024*1024)).build()).build();dataGen.sinkTo(fieSink);env.execute();}
}

输出到 Kafka

(1)添加Kafka 连接器依赖
由于我们已经测试过从Kafka数据源读取数据,连接器相关依赖已经引入,这里就不重复介绍了。
(2)启动Kafka集群
(3)编写输出到Kafka的示例代码

public class SinkKafka {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);// 如果是精准一次,必须开启checkpoint(后续章节介绍)env.enableCheckpointing(2000, CheckpointingMode.EXACTLY_ONCE);SingleOutputStreamOperator<String> sensorDS = env.socketTextStream("hadoop102", 7777);/*** Kafka Sink:* TODO 注意:如果要使用 精准一次 写入Kafka,需要满足以下条件,缺一不可* 1、开启checkpoint(后续介绍)* 2、设置事务前缀* 3、设置事务超时时间:   checkpoint间隔 <  事务超时时间  < max的15分钟*/KafkaSink<String> kafkaSink = KafkaSink.<String>builder()// 指定 kafka 的地址和端口.setBootstrapServers("hadoop102:9092,hadoop103:9092,hadoop104:9092")// 指定序列化器:指定Topic名称、具体的序列化.setRecordSerializer(KafkaRecordSerializationSchema.<String>builder().setTopic("ws").setValueSerializationSchema(new SimpleStringSchema()).build())// 写到kafka的一致性级别: 精准一次、至少一次.setDeliveryGuarantee(DeliveryGuarantee.EXACTLY_ONCE)// 如果是精准一次,必须设置 事务的前缀.setTransactionalIdPrefix("atguigu-")// 如果是精准一次,必须设置 事务超时时间: 大于checkpoint间隔,小于 max 15分钟.setProperty(ProducerConfig.TRANSACTION_TIMEOUT_CONFIG, 10*60*1000+"").build();sensorDS.sinkTo(kafkaSink);env.execute();}
}

自定义序列化器,实现带key的record:

public class SinkKafkaWithKey {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);env.enableCheckpointing(2000, CheckpointingMode.EXACTLY_ONCE);env.setRestartStrategy(RestartStrategies.noRestart());SingleOutputStreamOperator<String> sensorDS = env.socketTextStream("hadoop102", 7777);/*** 如果要指定写入kafka的key,可以自定义序列化器:* 1、实现 一个接口,重写 序列化 方法* 2、指定key,转成 字节数组* 3、指定value,转成 字节数组* 4、返回一个 ProducerRecord对象,把key、value放进去*/KafkaSink<String> kafkaSink = KafkaSink.<String>builder().setBootstrapServers("hadoop102:9092,hadoop103:9092,hadoop104:9092").setRecordSerializer(new KafkaRecordSerializationSchema<String>() {@Nullable@Overridepublic ProducerRecord<byte[], byte[]> serialize(String element, KafkaSinkContext context, Long timestamp) {String[] datas = element.split(",");byte[] key = datas[0].getBytes(StandardCharsets.UTF_8);byte[] value = element.getBytes(StandardCharsets.UTF_8);return new ProducerRecord<>("ws", key, value);}}).setDeliveryGuarantee(DeliveryGuarantee.EXACTLY_ONCE).setTransactionalIdPrefix("atguigu-").setProperty(ProducerConfig.TRANSACTION_TIMEOUT_CONFIG, 10 * 60 * 1000 + "").build();sensorDS.sinkTo(kafkaSink);env.execute();}
}

输出到 mysql

写入数据的MySQL的测试步骤如下。
(1)添加依赖
添加MySQL驱动:

<dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>8.0.27</version>
</dependency>

官方还未提供flink-connector-jdbc的1.17.0的正式依赖,暂时从apache snapshot仓库下载,pom文件中指定仓库路径:

<repositories><repository><id>apache-snapshots</id><name>apache snapshots</name>
<url>https://repository.apache.org/content/repositories/snapshots/</url></repository>
</repositories>

添加依赖:

<dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-jdbc</artifactId><version>1.17-SNAPSHOT</version>
</dependency>

如果不生效,还需要修改本地maven的配置文件,mirrorOf中添加如下标红内容:

<mirror><id>aliyunmaven</id><mirrorOf>*,!apache-snapshots</mirrorOf><name>阿里云公共仓库</name><url>https://maven.aliyun.com/repository/public</url>
</mirror>

(2)启动MySQL,在test库下建表ws

mysql>
CREATE TABLE ws (
id varchar(100) NOT NULL,
ts bigint(20) DEFAULT NULL,
vc int(11) DEFAULT NULL,
PRIMARY KEY (id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8

(3)编写输出到MySQL的示例代码

public class SinkMySQL {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
SingleOutputStreamOperator<WaterSensor> sensorDS = env
.socketTextStream("hadoop102", 7777)
.map(new WaterSensorMapFunction());/*** TODO 写入mysql* 1、只能用老的sink写法: addsink* 2、JDBCSink的4个参数:*    第一个参数: 执行的sql,一般就是 insert into*    第二个参数: 预编译sql, 对占位符填充值*    第三个参数: 执行选项 ---》 攒批、重试*    第四个参数: 连接选项 ---》 url、用户名、密码*/
SinkFunction<WaterSensor> jdbcSink = JdbcSink.sink("insert into ws values(?,?,?)",new JdbcStatementBuilder<WaterSensor>() {@Overridepublic void accept(PreparedStatement preparedStatement, WaterSensor waterSensor) throws SQLException {//每收到一条WaterSensor,如何去填充占位符preparedStatement.setString(1, waterSensor.getId());preparedStatement.setLong(2, waterSensor.getTs());preparedStatement.setInt(3, waterSensor.getVc());}},JdbcExecutionOptions.builder().withMaxRetries(3) // 重试次数.withBatchSize(100) // 批次的大小:条数.withBatchIntervalMs(3000) // 批次的时间.build(),new JdbcConnectionOptions.JdbcConnectionOptionsBuilder().withUrl("jdbc:mysql://hadoop102:3306/test?serverTimezone=Asia/Shanghai&useUnicode=true&characterEncoding=UTF-8").withUsername("root").withPassword("000000").withConnectionCheckTimeoutSeconds(60) // 重试的超时时间.build()
);sensorDS.addSink(jdbcSink);env.execute();
}
}

(4)运行代码,用客户端连接MySQL,查看是否成功写入数据。

自定义 sink

如果我们想将数据存储到我们自己的存储设备中,而Flink并没有提供可以直接使用的连接器,就只能自定义Sink进行输出了。与Source类似,Flink为我们提供了通用的SinkFunction接口和对应的RichSinkDunction抽象类,只要实现它,通过简单地调用DataStream的.addSink()方法就可以自定义写入任何外部存储。
stream.addSink(new MySinkFunction());
在实现SinkFunction的时候,需要重写的一个关键方法invoke(),在这个方法中我们就可以实现将流里的数据发送出去的逻辑。
这种方式比较通用,对于任何外部存储系统都有效;不过自定义Sink想要实现状态一致性并不容易,所以一般只在没有其它选择时使用。实际项目中用到的外部连接器Flink官方基本都已实现,而且在不断地扩充,因此自定义的场景并不常见。

相关文章:

[flink 实时流基础] 输出算子(Sink)

学习笔记 Flink作为数据处理框架&#xff0c;最终还是要把计算处理的结果写入外部存储&#xff0c;为外部应用提供支持。 文章目录 **连接到外部系统****输出到文件**输出到 Kafka输出到 mysql自定义 sink 连接到外部系统 Flink的DataStream API专门提供了向外部写入数据的方…...

case语句

Oracle从入门到总裁:​​​​​​https://blog.csdn.net/weixin_67859959/article/details/135209645 CASE 语句的执行方式与 IF...THEN...ELSIF 语句的执行方式类似&#xff0c;但是它是通过一个表达式的值来决定执行哪个分支 CASE 选择器表达式 WHEN 条件 1 THEN 语句序列 …...

全国加油站分布数据/停车场分布/公园分布/景区分布/保护区分布/poi感兴趣点

加油站是指为汽车和其它机动车辆服务的、零售汽油和机油的补充站&#xff0c;一般为添加燃料油、润滑油等。由于加油站所销售的石油商品具有易燃爆、易挥发、易渗漏、易集聚静电荷的特性&#xff0c;故加油站以“安全”为第一准则。在加油站内严禁烟火&#xff0c;严禁从事可能…...

单片机简介(一)

51单片机 一台能够运行的计算机需要CPU做运算和控制&#xff0c;RAM做数据存储&#xff0c;ROM做程序存储&#xff0c;还有输入/输出设备&#xff08;串行口、并行输出口等&#xff09;&#xff0c;这些被分为若干块芯片&#xff0c;安装在主板&#xff08;印刷线路板&#xf…...

Naiveui将message挂载到axios拦截器

最近在做项目&#xff0c;需要将后端的请求结果打印出来 但是想着&#xff0c;要是这样一个一个手动引入naiveui的msg&#xff0c;那不得累死 于是灵机一动&#xff0c;想着既然所有接口要通过拦截器&#xff0c;为什么不将msg写在拦截器呢 一、定义一个消息挂载文件 // The…...

MySQL、Oracle查看字节和字符长度个数的函数

目录 0. 总结1. MySQL1.1. 造数据1.2. 查看字符/字节个数 2. Oracle2.1. 造数据2.2. 查看字符/字节个数 0. 总结 databasecharbyteMySQLchar_length()length()Oraclelength()lengthB() 1. MySQL 1.1. 造数据 sql drop table if exists demo; create table demo (id …...

第五篇:3.4 用户归因和受众(User attribution and audience) - IAB/MRC及《增强现实广告效果测量指南1.0》

翻译计划 第一篇概述—IAB与MRC及《增强现实广告效果测量指南》之目录、适用范围及术语第二篇广告效果测量定义和其他矩阵之- 3.1 广告印象&#xff08;AD Impression&#xff09;第三篇广告效果测量定义和其他矩阵之- 3.2 可见性 &#xff08;Viewability&#xff09;第四篇广…...

ES6: class类

类 class 面相对象class关键字创建类关于类的继承 面相对象 一切皆对象。 举例&#xff1a; 操作浏览器要使用window对象&#xff1b;操作网页要使用document对象&#xff1b;操作控制台要使用console对象&#xff1b; ES6中增加了类的概念&#xff0c;其实ES5中已经可以实现类…...

[中级]软考_软件设计_计算机组成与体系结构_08_输入输出技术

输入输出技术 前言控制方式考点往年真题 前言 输入输出技术就是IO技术 控制方式 程序控制(查询)方式&#xff1a;分为无条件传送和程序查询方式两种。 方法简单&#xff0c;硬件开销小&#xff0c;但I/O能力不高&#xff0c;严重影响CPU的利用率。 程序中断方式&#xff1…...

2024-04-04 问AI: 在深度学习中,微调是什么?

文心一言 在深度学习中&#xff0c;微调&#xff08;Fine-tuning&#xff09;是一种训练策略&#xff0c;特别针对预训练模型进行。预训练模型通常是在大规模无标注数据上通过自监督学习得到的&#xff0c;它们已经具备了对一般自然语言结构或视觉特征的良好理解能力。微调则是…...

db2数据仓库集群的搭建

db2数据仓库集群的搭建 DB2 集群的搭建通常涉及到多个环节&#xff0c;包括网络配置、DB2 软件安装、集群配置和数据库创建等。以下是搭建DB2集群的基本步骤&#xff0c;并不是实际的命令和配置&#xff0c;因为每个环境的具体配置可能会有所不同。 1、网络配置&#xff1a;确…...

Linux ARM平台开发系列讲解(u-boot篇) 5.1 u-boot的启动流程分析(ARMv8-a)

1. 概述 对于嵌入式来说,bootload对于开发人员来说并不陌生,但是在不同芯片架构中,bootload程序所做的一些操作是有所不同的,比如常见的STM32 Cotex-M和RK3568 之间的启动流程所做的操作是有所不同的。本小节就来概述一下U-boot的启动流程: 注意:本章节中的源码我大多数…...

ST表(数据结构中的问题)

RMQ问题 RMQ问题指对于数值&#xff0c;每次给一个区间[l,r]&#xff0c;要求返回区间区间的最大值或最小值 也就是说&#xff0c;RMQ就是求区间最值的问题 对于RMQ问题&#xff0c;容易想到一种O&#xff08;n&#xff09;的方法&#xff0c;就是用i直接遍历[l,r]区间&…...

一、OpenCV(C#版本)环境搭建

一、Visual Studio 创建新项目 二、选择Windows窗体应用&#xff08;.NET Framework&#xff09; 直接搜索模板&#xff1a;Windows窗体应用(.NET Framework) 记得是C#哈&#xff0c;别整成VB(Visual Basic)了 PS&#xff1a;若搜索搜不到&#xff0c;直接点击安装多个工具和…...

ubuntu远程服务部署,Docker,蓝牙无线局域网,SSH,VNC,xfce4,NextTerminal,宝塔,NPS/NPC,gost,openwrt

SSH服务 apt update apt upgrade -y apt install -y openssh-server/etc/ssh/sshd_config PermitRootLogin yesDocker curl -fsSL https://get.docker.com | bash -s docker --mirror Aliyun apt install -y docker-compose宝塔 wget -O install.sh https://download.bt.cn…...

kettle安装与部署使用教程

kettle 官网下载与部署使用 文章目录 kettle 官网下载与部署使用1. 前言&#xff1a;2. 访问官方网站&#xff1a;3. Download Pentaho3.1 官网首页**滑动到最底**&#xff0c;寻找下载链接&#xff1a;3.2 跳转到下载界面后&#xff0c;选择 Pentaho Community Edition (CE)3.…...

【C语言】编译和链接

1. 翻译环境和运行环境 在ANSI C的任何⼀种实现中&#xff0c;存在两个不同的环境。 第1种是翻译环境&#xff0c;在这个环境中源代码被转换为可执⾏的机器指令&#xff08;⼆进制指令&#xff09;。 第2种是执⾏环境&#xff0c;它⽤于实际执⾏代码。 2. 编译环境 那翻译环境…...

Python学习: 错误和异常

Python 语法错误 解析错误(Parsing Error)通常指的是程序无法正确地解析(识别、分析)所给定的代码,通常是由于代码中存在语法错误或者其他无法理解的结构导致的。这可能是由于缺少括号、缩进错误、未关闭的引号或其他括号等问题造成的。 语法错误(Syntax Error)是指程序…...

WebGIS 之 vue3+vite+ceisum

1.项目搭建node版本在16以上 1.1创建项目 npm create vite 项目名 1.2选择框架 vuejavaScript 1.3进入项目安装依赖 cd 项目名 npm install 1.4安装cesium依赖 pnpm i cesium vite-plugin-cesium 1.5修改vite.config.js文件 import { defineConfig } from vite import vue fr…...

## CSDN创作活动:AI技术创业有哪些机会?

AI技术创业有哪些机会&#xff1f; 人工智能&#xff08;AI&#xff09;技术作为当今科技创新的前沿领域&#xff0c;为创业者提供了广阔的机会和挑战。随着AI技术的快速发展和应用领域的不断拓展&#xff0c;未来AI技术方面会有哪些创业机会呢&#xff1f; 方向一&#xff1…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中&#xff0c;我们已经大致实现了rpc服务端的各项功能代…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...

uniapp 小程序 学习(一)

利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 &#xff1a;开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置&#xff0c;将微信开发者工具放入到Hbuilder中&#xff0c; 打开后出现 如下 bug 解…...