当前位置: 首页 > news >正文

NoSQL概述

NoSQL概述

目录

一、为什么用NoSQL

二、什么是NoSQL

三、经典应用分析

四、N o S Q L 数 据 模 型 简 介 

五、NoSQL四大分类 

六、CAP + BASE 


一、为什么用NoSQL

1、单机MySQL的美好年代

 在90年代,一个网站的访问量一般不大,用单个数据库完全可以轻松应付!在那个时候,更多的都是静态网页,动态交互类型的网站不多。

 上述架构下,我们来看看数据存储的瓶颈是什么?

  1. 数据量的总大小,一个机器放不下时
  2. 数据的索引(B+ Tree)一个机器的内存放不下时
  3. 访问量(读写混合)一个实例不能承受

 如果满足了上述 1 or 3个,进化....DAL:数据库访问层

 2、Memcached(缓存)+ MySQL + 垂直拆分

后来,随着访问量的上升,几乎大部分使用MySQL架构的网站在数据库上都开始出现了性能问题,web程序不再仅仅专注在功能上,同时也在追求性能。程序猿们开始大量使用缓存技术来缓解数据库的压

力,优化数据库的结构和索引,开始比较流行的是通过文件缓存来缓解数据库压力,但是当访问量继续增大的时候,多台web机器通过文件缓存不能共享,大量的小文件缓存也带了比较高的IO压力,在这个时候,Memcached就自然的成为一个非常时尚的技术产品。

 

 3、MySQL主从读写分离

由于数据库的写入压力增加,Memcached只能缓解数据库的读取压力,读写集中在一个数据库上让数据库不堪重负,大部分网站开始使用主从复制技术来达到读写分离,以提高读写性能和读库的可扩展性,MySQL的master-slave模式成为这个时候的网站标配了。

 4、分表分库 + 水平拆分 + Mysql 集群

在Memcached的高速缓存,MySQL的主从复制,读写分离的基础之上,这时MySQL主库的写压力开始出现瓶颈,而数据量的持续猛增,由于MyISAM使用表锁,在高并发下会出现严重的锁问题,大量的高并发MySQL应用开始使用InnoDB引擎代替MyISAM。

同时,开始流行使用分表分库来缓解写压力和数据增长的扩展问题,这个时候,分表分库成了一个热门技术,是面试的热门问题,也是业界讨论的热门技术问题。也就是在这个时候,MySQL推出了还不太稳定的表分区,这也给技术实力一般的公司带来了希望。虽然MySQL推出了MySQL Cluster集群,但性能也不能很好满足互联网的需求,只是在高可靠性上提供了非常大的保证。

 5、MySQL 的扩展性瓶颈

 MySQL数据库也经常存储一些大文本的字段,导致数据库表非常的大,在做数据库恢复的时候就导致非常的慢,不容易快速恢复数据库,比如1000万4KB大小的文本就接近40GB的大小,如果能把这些数据从MySQL省去,MySQL将变的非常的小,关系数据库很强大,但是它并不能很好的应付所有的应用场景,MySQL的扩展性差(需要复杂的技术来实现),大数据下IO压力大,表结构更改困难,正是当前使用MySQL的开发人员面临的问题。

 6、今天是什么样子??

 7、为什么用NoSQL?

 今天我们可以通过第三方平台(如:Google,FaceBook等)可以很容易的访问和抓取数据。用户的个人信息,社交网络,地理位置,用户生成的数据和用户操作日志已经成倍的增加、我们如果要对这些用户数据进行挖掘,那SQL数据库已经不适合这些应用了,而NoSQL数据库的发展却能很好的处理这些大的数据!

二、什么是NoSQL

NoSQL 

 NoSQL = Not Only SQL,意思:不仅仅是SQL;

 泛指非关系型的数据库,随着互联网Web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的社交网络服务类型的Web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展,NoSQL数据库的产生就是为了解决大规模数据集合多种数据种类带来的挑战,尤其是大数据应用难题,包括超大规模数据的存储。

(例如谷歌或Facebook每天为他们的用户收集万亿比特的数据)。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。 

NoSQL的特点 

1、易扩展

NoSQL 数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。

数据之间无关系,这样就非常容易扩展,也无形之间,在架构的层面上带来了可扩展的能力。

2、大数据量高性能

 NoSQL数据库都具有非常高的读写性能,尤其是在大数据量下,同样表现优秀。这得益于它的非关系性,数据库的结构简单。

一般MySQL使用Query Cache,每次表的更新Cache就失效,是一种大力度的Cache,在针对Web2.0的交互频繁应用,Cache性能不高,而NoSQL的Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多了。 

官方记录:Redis 一秒可以写8万次,读11万次! 

3、多样灵活的数据模型 

NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式,而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是噩梦。 

 4、传统的RDBMS VS NoSQL

拓展:3V+3高 

大数据时代的3V : 主要是对问题的描述

  • 海量 Volume
  • 多样 Variety
  • 实时 Velocity

互联网需求的3高 : 主要是对程序的要求

  • 高并发
  • 高可用
  • 高性能

当下的应用是 SQL 和 NoSQL 一起使用,技术没有高低之分,就看你怎么用,对吧! 

三、经典应用分析

聊聊阿里巴巴中文网站的商品信息如何存放,以女装、包包为例: 


聊聊架构发展历程:推荐书籍《淘宝技术这十年》  1、演变过程:以下图片资料来源:阿里巴巴中文站架构设计实践  

 2、第五代

 3、第5代架构使命

和我们相关的,多数据源多数据类型的存储问题 

1、商品的基本信息 

2、商品描述、详情、评价信息(多文字类) 

3、商品的图片 

4、商品的关键字 

 5、商品的波段性的热点高频信息

6、商品的交易,价格计算,积分累计! 

大型互联网应用(大数据,高并发,多样数据类型)的难点和解决方案  

难点:

  • 数据类型的多样性
  • 数据源多样性和变化重构
  • 数据源改造而数据服务平台不需要大面积重构  

解决办法: 

 

 

四、N o S Q L 数 据 模 型 简 介 

 案 例 设 计

以一个电商客户,订单,订购,地址模型来对比下关系型数据库和非关系型数据库

传统的关系型数据库你如何设计?

ER图(1:1/1:N/N:N,主外键等常见)

  • 用户对应多个订单多个地址
  • 每个订单对应
  • 每个商品、价格、地址 每个商品对应产品  

 NoSQL你如何设计

可以尝试使用BSON

BSON是一种类json的一种二进制形式的存储格式,简称Binary JSON,它和JSON一样,支持内嵌的文档 对象和数组对象

用BSon画出构建的数据模型 

{"customer":{"id":1000,"name":"Z3","billingAddress":[{"city":"beijing"}],"orders":[{"id":17,"customerId":1000,"orderItems":[{"productId":27,"price":77.5,"productName":"thinking in 
java"}],"shippingAddress":[{"city":"beijing"}]"orderPayment":[{"ccinfo":"111-222-
333","txnid":"asdfadcd334","billingAddress":{"city":"beijing"}}],}]}
}

想想关系模型数据库你如何查?如果按照我们新设计的BSon,是不是查询起来很简单。

  • 高并发的操作是不太建议有关联查询的,互联网公司用冗余数据来避免关联查询
  • 分布式事务是支持不了太多的并发的

五、NoSQL四大分类 

 KV键值:

  • 新浪:BerkeleyDB+redis
  • 美团:redis+tair
  • 阿里、百度:memcache+redis

文档型数据库(bson格式比较多):

  • CouchDB
  • MongoDB
    • MongoDB 是一个基于分布式文件存储的数据库。由 C++ 语言编写。旨在为 WEB 应用提供可 扩展的高性能数据存储解决方案。
    • MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰 富,最像关系数据库的。

列存储数据库:

  • Cassandra, HBase
  • 分布式文件系统

图关系数据库

  • 它不是放图形的,放的是关系比如:朋友圈社交网络、广告推荐系统
  • 社交网络,推荐系统等。专注于构建关系图谱
  • Neo4J, InfoGrid  

四者对比 

六、CAP + BASE 

传统的ACID分别是什么? 

关系型数据库遵循ACID规则,事务在英文中是transaction,和现实世界中的交易很类似,它有如下四个 特性:

  • A (Atomicity) 原子性

  • C (Consistency) 一致性

  • I (Isolation) 隔离性

  • D (Durability) 持久性 

CAP(三进二) 

  • C : Consistency(强一致性)
  • A : Availability(可用性)
  • P : Partition tolerance(分区容错性)  

CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。

而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容错性是我们必须需要实现的

所以我们只能在一致性和可用性之间进行权衡,没有NoSQL系统能同时保证这三点。

注意:分布式架构的时候必须做出取舍。

一致性和可用性之间取一个平衡。多余大多数web应用,其实并不需要强一致性。

因此牺牲C换取P,这是目前分布式数据库产品的方向  

一致性与可用性的决择

对于web2.0网站来说,关系数据库的很多主要特性却往往无用武之地 

数据库事务一致性需求

很多web实时系统并不要求严格的数据库事务,对读一致性的要求很低, 有些场合对写一致性要求并不 高。允许实现最终一致性。

数据库的写实时性和读实时性需求

对关系数据库来说,插入一条数据之后立刻查询,是肯定可以读出来这条数据的,但是对于很多web应 用来说,并不要求这么高的实时性,比方说发一条消息之 后,过几秒乃至十几秒之后,我的订阅者才看 到这条动态是完全可以接受的。 

对复杂的SQL查询,特别是多表关联查询的需求

任何大数据量的web系统,都非常忌讳多个大表的关联查询,以及复杂的数据分析类型的报表查询,特 别是SNS类型的网站,从需求以及产品设计角度,就避免了这种情况的产生。往往更多的只是单表的主 键查询,以及单表的简单条件分页查询,SQL的功能被极大的弱化了。

CAP理论的核心是:一个分布式系统不可能同时很好的满足一致性,可用性和分区容错性这三个需求, 最多只能同时较好的满足两个。因此,根据 CAP 原理将 NoSQL 数据库分成了满足 CA 原则、满足 CP 原则和满足 AP 原则三 大类:

  • CA - 单点集群,满足一致性,可用性的系统,通常在可扩展性上不太强大。
  • CP - 满足一致性,分区容忍必的系统,通常性能不是特别高。
  • AP - 满足可用性,分区容忍性的系统,通常可能对一致性要求低一些。 

BASE 理论 

BASE理论是由eBay架构师提出的。BASE是对CAP中一致性和可用性权衡的结果,其来源于对大规模互 联网分布式系统实践的总结,是基于CAP定律逐步演化而来。其核心思想是即使无法做到强一致性,但 每个应用都可以根据自身业务特点,采用适当的方式来使系统达到最终一致性。

BASE就是为了解决关系数据库强一致性引起的问题而引起的可用性降低而提出的解决方案。 

BASE其实是下面三个术语的缩写:

  • 基本可用(Basically Available): 基本可用是指分布式系统在出现故障的时候,允许损失部分可用 性,即保证核心可用。电商大促时,为了应对访问量激增,部分用户可能会被引导到降级页面,服 务层也可能只提供降级服务。这就是损失部分可用性的体现。
  • 软状态(Soft State): 软状态是指允许系统存在中间状态,而该中间状态不会影响系统整体可用 性。分布式存储中一般一份数据至少会有三个副本,允许不同节点间副本同步的延时就是软状态的 体现。MySQL Replication 的异步复制也是一种体现。
  • 最终一致性(Eventual Consistency): 最终一致性是指系统中的所有数据副本经过一定时间后,最 终能够达到一致的状态。弱一致性和强一致性相反,最终一致性是弱一致性的一种特殊情况。

它的思想是通过让系统放松对某一时刻数据一致性的要求来换取系统整体伸缩性和性能上改观。为什么 这么说呢,缘由就在于大型系统往往由于地域分布和极高性能的要求,不可能采用分布式事务来完成这 些指标,要想获得这些指标,我们必须采用另外一种方式来完成,这里BASE就是解决这个问题的办法! 

解释:

1、分布式:不同的多台服务器上面部署不同的服务模块(工程),他们之间通过Rpc通信和调用,对外 提供服务和组内协作。

2、集群:不同的多台服务器上面部署相同的服务模块,通过分布式调度软件进行统一的调度,对外提供 服务和访问。  

相关文章:

NoSQL概述

NoSQL概述 目录 一、为什么用NoSQL 二、什么是NoSQL 三、经典应用分析 四、N o S Q L 数 据 模 型 简 介 五、NoSQL四大分类 六、CAP BASE 一、为什么用NoSQL 1、单机MySQL的美好年代 在90年代,一个网站的访问量一般不大,用单个数据库完全可以轻松应…...

爬虫实战一、Scrapy开发环境(Win10+Anaconda3)搭建

#前言 在这儿推荐使用Anaconda进行安装,并不推荐大家用pythonpip安装,因为pythonpip的坑实在是太多了。 #一、环境中准备: Win10(企业版)Anaconda3-5.0.1-Windows-x86_64,下载地址,如果打不开…...

llama.cpp运行qwen0.5B

编译llama.cp 参考 下载模型 05b模型下载 转化模型 创建虚拟环境 conda create --prefixD:\miniconda3\envs\llamacpp python3.10 conda activate D:\miniconda3\envs\llamacpp安装所需要的包 cd G:\Cpp\llama.cpp-master pip install -r requirements.txt python conver…...

【接口】HTTP(3) |GET和POST两种基本请求方法有什么区别

在我面试时,在我招人面试别人时,10次能遇到7次这个问题,我听过我也说回答过: Get: 一般对于从服务器取数据的请求可以设置为get方式 Get方式在传递参数的时候,一般都会把参数直接拼接在url上 Get请求方法…...

金陵科技学院软件工程学院软件工程专业

感兴趣的小伙伴可以私信我哦~~ 是笔者写的各种高质量作业和实验哦~~ 感兴趣的小伙伴可以私信我哦~~ 是笔者写的各种高质量作业和实验哦~~ 感兴趣的小伙伴可以私信我哦~~ 是笔者写的各种高质量作业和实验哦~~ 感兴趣的小伙伴可以私信我哦~~ 是笔者写的各种高质量作业和实验哦…...

Android 关于apk反编译d2j-dex2jar classes.dex失败的几种方法

目录 确认路径正确直接定位到指定目录确定目录正确,按如下路径修改下面是未找到相关文件正确操作 确认路径正确 ,即d2j-dex2jar和classes.dex是否都在一个文件夹里(大部分的情况都是路径不正确) 直接定位到指定目录 路径正确的…...

Django--admin 后台管理站点

Django最大的优点之一,就是体贴的提供了一个基于项目model创建的一个后台管理站点admin。这个界面只给站点管理员使用,并不对大众开放。虽然admin的界面可能不是那么美观,功能不是那么强大,内容不一定符合你的要求,但是…...

JavaScript(六)---【回调、异步、promise、Async】

零.前言 JavaScript(一)---【js的两种导入方式、全局作用域、函数作用域、块作用域】-CSDN博客 JavaScript(二)---【js数组、js对象、this指针】-CSDN博客 JavaScript(三)---【this指针,函数定义、Call、Apply、函数绑定、闭包】-CSDN博客 JavaScript(四)---【执…...

vue2+elementUi的两个el-date-picker日期组件进行联动

vue2elementUi的两个el-date-picker日期组件进行联动 <template><el-form><el-form-item label"起始日期"><el-date-picker v-model"form.startTime" change"startTimeChange" :picker-options"startTimePickerOption…...

GIN实例讲解

第一个gin程序 package mainimport ("github.com/gin-gonic/gin" )func main() {// 创建一个 Gin 引擎实例r : gin.Default()// 定义一个 GET 请求的路由&#xff0c;当访问 /hello 路径时执行匿名函数r.GET("/hello", func(c *gin.Context) {// 获取查询…...

开源充电桩设备监控系统技术解决方案

开源 | 慧哥充电桩平台V2.5.2&#xff08;支持 汽车 电动自行车 云快充1.5、云快充1.6 微服务 &#xff09; SpringBoot设备监控系统解决方案 一、引言 1.项目背景 随着物联网技术的快速发展&#xff0c;设备的智能化和网络化程度日益提高。在现代工业和信息化的背景下&#x…...

环形链表--极致的简便

一、要求 给你一个链表的头节点 head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置&a…...

WPF中TextWrapping

在 WPF&#xff08;Windows Presentation Foundation&#xff09;中&#xff0c;TextWrapping 是一个与文本布局相关的属性&#xff0c;用于控制文本在遇到容器边界时是否自动换行。这个属性常用于文本展示控件&#xff0c;如 TextBlock、TextBox、Label 等&#xff0c;以确保文…...

Win10 下 git error unable to create file Invalid argument 踩坑实录

原始解决方案参看&#xff1a;https://stackoverflow.com/questions/26097568/git-pull-error-unable-to-create-file-invalid-argument 本问题解决于 2024-02-18&#xff0c;使用 git 版本 2.28.0.windows.1 解决方案 看 Git 抛出的出错的具体信息&#xff0c;比如如下都来自…...

简化备案域名查询的最新API接口

随着互联网的发展&#xff0c;越来越多的网站和域名被注册和备案。备案域名查询是一个非常重要的功能&#xff0c;可以帮助用户在特定时间段内查询已备案的域名信息。现在&#xff0c;我将介绍一个简化备案域名查询的最新API接口&#xff0c;该接口可以帮助用户快速查询备案域名…...

基于SpringBoot和Vue的校园周边美食探索以及分享系统

今天要和大家聊的是基于SpringBoot和Vue的校园周边美食探索以及分享系统 &#xff01;&#xff01;&#xff01; 有需要的小伙伴可以通过文章末尾名片咨询我哦&#xff01;&#xff01;&#xff01; &#x1f495;&#x1f495;作者&#xff1a;李同学 &#x1f495;&#x1f…...

TiDB单机版安装和连接访问

TiDB单机版安装和连接访问 1、下载 $wget http://download.pingcap.org/tidb-latest-linux-amd64.tar.gz 2、解压缩 $tar -zxvf tidb-latest-linux-amd64.tar.gz 3、启动TiDB 启动PD $./bin/pd-server --data-dirpd --log-filepd.log 启动tikv $./bin/tikv-server --pd…...

Spark-Scala语言实战(13)

在之前的文章中&#xff0c;我们学习了如何在spark中使用键值对中的keys和values,reduceByKey,groupByKey三种方法。想了解的朋友可以查看这篇文章。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的不错&#xff0c;请留下你宝贵的点赞&#xff0c;谢…...

Android compose 使用指纹验证

基于compose进行指纹验证 点击按钮进行验证 Button(onClick {var passed falseval biometic BiometricPrompt.Builder(applicationContext).setTitle("使用指纹解锁App").setSubtitle("证明你是手机的主人").setNegativeButton("取消验证",…...

开源模型应用落地-chatglm3-6b模型小试-入门篇(一)

一、前言 刚开始接触AI时&#xff0c;您可能会感到困惑&#xff0c;因为面对众多开源模型的选择&#xff0c;不知道应该选择哪个模型&#xff0c;也不知道如何调用最基本的模型。但是不用担心&#xff0c;我将陪伴您一起逐步入门&#xff0c;解决这些问题。 在信息时代&#xf…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...