当前位置: 首页 > news >正文

PyTorch之Torch Script的简单使用

一、参考资料

TorchScript 简介
Torch Script
Loading a TorchScript Model in C++
TorchScript 解读(一):初识 TorchScript
libtorch教程(一)开发环境搭建:VS+libtorch和Qt+libtorch

二、Torch Script模型格式

1. Torch Script简介

Torch Script 是一种序列化和优化 PyTorch 模型的格式,在优化过程中,一个 torch.nn.Module 模型会被转换成 Torch Script 的 torch.jit.ScriptModule 模型。通常,TorchScript 被当成一种中间表示使用。

Torch Script 的主要用途是进行模型部署,需要记录生成一个便于推理优化的 IR,对计算图的编辑通常都是面向性能提升等等,不会给模型本身添加新的功能。

模型格式支持语言适用场景
PyTorch modelPython模型训练
Torch ScriptC++模型推理,模型部署

2. 生成Torch Script模型

如何将PyTorch model格式转换为Torch Script,有两种方式: torch.jit.tracetorch.jit.script

As its name suggests, the primary interface to PyTorch is the Python programming language. While Python is a suitable and preferred language for many scenarios requiring dynamism and ease of iteration, there are equally many situations where precisely these properties of Python are unfavorable. One environment in which the latter often applies is production – the land of low latencies and strict deployment requirements. For production scenarios, C++ is very often the language of choice, even if only to bind it into another language like Java, Rust or Go. The following paragraphs will outline the path PyTorch provides to go from an existing Python model to a serialized representation that can be loaded and executed purely from C++, with no dependency on Python.

A PyTorch model’s journey from Python to C++ is enabled by Torch Script, a representation of a PyTorch model that can be understood, compiled and serialized by the Torch Script compiler. If you are starting out from an existing PyTorch model written in the vanilla “eager” API, you must first convert your model to Torch Script.

There exist two ways of converting a PyTorch model to Torch Script. The first is known as tracing, a mechanism in which the structure of the model is captured by evaluating it once using example inputs, and recording the flow of those inputs through the model. This is suitable for models that make limited use of control flow. The second approach is to add explicit annotations to your model that inform the Torch Script compiler that it may directly parse and compile your model code, subject to the constraints imposed by the Torch Script language.

2.1 trace跟踪模式

Converting to Torch Script via Tracing
How to convert your PyTorch model to TorchScript

功能:将不带控制流的模型转换为 Torch Script,并生成一个 ScriptModule 对象。

函数原型:torch.jit.trace

所谓 trace 指的是进行一次模型推理,在推理的过程中记录所有经过的计算,将这些记录整合成计算图,即模型的静态图。

trace跟踪模式的缺点是:无法识别出模型中的控制流(如循环)

To convert a PyTorch model to Torch Script via tracing, you must pass an instance of your model along with an example input to the torch.jit.trace function. This will produce a torch.jit.ScriptModule object with the trace of your model evaluation embedded in the module’s forward method.

import torch
import torchvision# An instance of your model.
model = torchvision.models.resnet18(pretrained=True)# Switch the model to eval model
model.eval()# An example input you would normally provide to your model's forward() method.
dummy_input = torch.rand(1, 3, 224, 224)# Use torch.jit.trace to generate a torch.jit.ScriptModule via tracing.
traced_script_module = torch.jit.trace(model, dummy_input)# Save the TorchScript model
traced_script_module.save("traced_resnet18_model.pt")output = traced_script_module(torch.ones(1, 3, 224, 224))# IR中间表示
print(traced_script_module.graph)
print(traced_script_module.code)# 调用traced_cell会产生与 Python 模块相同的结果
print(model(x, h))
print(traced_script_module(x, h))

2.2 script记录模式(带控制流)

功能:将带控制流的模型转换为 Torch Script,并生成一个 ScriptModule 对象。

函数原型:torch.jit.script

script记录模式,通过解析模型来正确记录所有的控制流。script记录模式直接解析网络定义的 python 代码,生成抽象语法树 AST。

Because the forward method of this module uses control flow that is dependent on the input, it is not suitable for tracing. Instead, we can convert it to a ScriptModule. In order to convert the module to the ScriptModule, one needs to compile the module with torch.jit.script as follows.

class MyModule(torch.nn.Module):def __init__(self, N, M):super(MyModule, self).__init__()self.weight = torch.nn.Parameter(torch.rand(N, M))def forward(self, input):if input.sum() > 0:output = self.weight.mv(input)else:output = self.weight + inputreturn outputmy_module = MyModule(10,20)
sm = torch.jit.script(my_module)# Save the ScriptModule
sm.save("my_module_model.pt")

2.3 trace格式转换

import torch
import torchvision
from unet import UNetmodel = UNet(3, 2) 
model.load_state_dict(torch.load("best_weights.pth"))
model.eval()example = torch.rand(1, 3, 320, 480) 
traced_script_module = torch.jit.trace(model, example)
traced_script_module.save("model.pt")

三、Loading a TorchScript Model in C++

1. C++加载 ScriptModule

创建一个简单的程序,目录结构如下所示:

example-app/CMakeLists.txtexample-app.cpp

1.1 example-app.cpp

#include <torch/script.h> // One-stop header.#include <iostream>
#include <memory>int main(int argc, const char* argv[]) {if (argc != 2) {std::cerr << "usage: example-app <path-to-exported-script-module>\n";return -1;}torch::jit::script::Module module;try {// Deserialize the ScriptModule from a file using torch::jit::load().module = torch::jit::load(argv[1]);}catch (const c10::Error& e) {std::cerr << "error loading the model\n";return -1;}std::cout << "ok\n";
}

The <torch/script.h> header encompasses all relevant includes from the LibTorch library necessary to run the example. Our application accepts the file path to a serialized PyTorch ScriptModule as its only command line argument and then proceeds to deserialize the module using the torch::jit::load() function, which takes this file path as input. In return we receive a torch::jit::script::Module object.

1.2 CMakeLists.txt

cmake_minimum_required(VERSION 3.0 FATAL_ERROR)
project(custom_ops)find_package(Torch REQUIRED)add_executable(example-app example-app.cpp)
target_link_libraries(example-app "${TORCH_LIBRARIES}")
set_property(TARGET example-app PROPERTY CXX_STANDARD 14)

1.3 编译执行

mkdir build
cd build
cmake -DCMAKE_PREFIX_PATH=/path/to/libtorch ..
cmake --build . --config Release
make

输出结果

root@4b5a67132e81:/example-app# mkdir build
root@4b5a67132e81:/example-app# cd build
root@4b5a67132e81:/example-app/build# cmake -DCMAKE_PREFIX_PATH=/path/to/libtorch ..
-- The C compiler identification is GNU 5.4.0
-- The CXX compiler identification is GNU 5.4.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Looking for pthread.h
-- Looking for pthread.h - found
-- Looking for pthread_create
-- Looking for pthread_create - not found
-- Looking for pthread_create in pthreads
-- Looking for pthread_create in pthreads - not found
-- Looking for pthread_create in pthread
-- Looking for pthread_create in pthread - found
-- Found Threads: TRUE
-- Configuring done
-- Generating done
-- Build files have been written to: /example-app/build
root@4b5a67132e81:/example-app/build# make
Scanning dependencies of target example-app
[ 50%] Building CXX object CMakeFiles/example-app.dir/example-app.cpp.o
[100%] Linking CXX executable example-app
[100%] Built target example-app

1.4 执行结果

If we supply the path to the traced ResNet18 model traced_resnet_model.pt we created earlier to the resulting example-app binary, we should be rewarded with a friendly “ok”. Please note, if try to run this example with my_module_model.pt you will get an error saying that your input is of an incompatible shape. my_module_model.pt expects 1D instead of 4D.

root@4b5a67132e81:/example-app/build# ./example-app <path_to_model>/traced_resnet_model.pt
ok

2. C++推理ScriptModule

main()函数中添加模型推理的代码:

// Create a vector of inputs.
std::vector<torch::jit::IValue> inputs;
inputs.push_back(torch::ones({1, 3, 224, 224}));// Execute the model and turn its output into a tensor.
at::Tensor output = module.forward(inputs).toTensor();
std::cout << output.slice(/*dim=*/1, /*start=*/0, /*end=*/5) << '\n';

编译执行

root@4b5a67132e81:/example-app/build# make
Scanning dependencies of target example-app
[ 50%] Building CXX object CMakeFiles/example-app.dir/example-app.cpp.o
[100%] Linking CXX executable example-app
[100%] Built target example-app
root@4b5a67132e81:/example-app/build# ./example-app traced_resnet_model.pt
-0.2698 -0.0381  0.4023 -0.3010 -0.0448
[ Variable[CPUFloatType]{1,5} ]

相关文章:

PyTorch之Torch Script的简单使用

一、参考资料 TorchScript 简介 Torch Script Loading a TorchScript Model in C TorchScript 解读&#xff08;一&#xff09;&#xff1a;初识 TorchScript libtorch教程&#xff08;一&#xff09;开发环境搭建&#xff1a;VSlibtorch和Qtlibtorch 二、Torch Script模型格…...

vscode 连接远程服务器 服务器无法上网 离线配置 .vscode-server

离线配置 vscode 连接远程服务器 .vscode-server 1. .vscode-server下载 使用vscode连接远程服务器时会自动下载配置.vscode-server文件夹&#xff0c;如果远程服务器无法联网&#xff0c;则需要手动下载 1&#xff09;网址&#xff1a;https://update.code.visualstudio.com…...

arm开发板移植工具mkfs.ext4

文章目录 一、前言二、手动安装e2fsprogs1、下载源码包2、解压源码3、配置4、编译5、安装 三、移植四、验证五、总结 一、前言 在buildroot菜单中&#xff0c;可以通过勾选e2fsprogs工具来安装mkfs.ext4工具&#xff1a; Target packages -> Filesystem and flash utilit…...

某盾滑块拼图验证码增强版

介绍 提示&#xff1a;文章仅供交流学习&#xff0c;严禁用于非法用途&#xff0c;如有不当可联系本人删除 最近某盾新推出了&#xff0c;滑块拼图验证码&#xff0c;如下图所示&#xff0c;这篇文章介绍怎么识别滑块距离相关。 参数attrs 通过GET请求获取的参数attrs, 决…...

这个世界万物存在只有一种关系:博弈

$上证指数(SH000001)$ 我能给各位最大的帮助可能就是第一个从红警游戏引入了情绪周期视角的概念&#xff0c;而这个概念可以帮助很多人理解市场成为一种可能性&#xff0c;如果不理解可以重新回归游戏进行反复体验&#xff0c;你体验的足够多&#xff0c;思考的足够多&#xff…...

c#让不同的工厂生产不同的“鸭肉”

任务目标 实现对周黑鸭工厂的产品生产统一管理&#xff0c;主要产品包括鸭脖和鸭翅。武汉工厂能生生产鸭脖和鸭翅&#xff0c;南京工厂只能生产鸭翅&#xff0c;长沙工厂只能生产鸭脖。 分析任务 我们需要有武汉工厂、南京工厂、长沙工厂的类&#xff0c;类中需要实现生产鸭…...

大数据分析与内存计算——Spark安装以及Hadoop操作——注意事项

一、Spark安装 1.相关链接 Spark安装和编程实践&#xff08;Spark3.4.0&#xff09;_厦大数据库实验室博客 (xmu.edu.cn) 2.安装Spark&#xff08;Local模式&#xff09; 按照文章中的步骤安装即可 遇到问题&#xff1a;xshell以及xftp不能使用 解决办法&#xff1a; 在…...

论文阅读RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection

文章目录 RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection问题笛卡尔坐标结构图Meta-Kernel Convolution RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection 论文&#xff1a;https://arxiv.org/pdf/2103.10039.pdf 代码&…...

3D模型格式转换工具HOOPS Exchange如何将3D文件加载到PRC数据结构中?

HOOPS Exchange是一款高效的数据访问工具&#xff0c;专为开发人员设计&#xff0c;用于在不同的CAD&#xff08;计算机辅助设计&#xff09;系统之间进行高保真的数据转换和交换。由Tech Soft 3D公司开发&#xff0c;它支持广泛的CAD文件格式&#xff0c;包括但不限于AutoCAD的…...

c# wpf Template ContentTemplate

1.概要 1.1 定义内容的外观 2.2 要点分析 2.代码 <Window x:Class"WpfApp2.Window1"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://schem…...

空和null是两回事

文章目录 前言 StringUtils1. 空&#xff08;empty&#xff09;&#xff1a;字符串&#xff1a;集合&#xff1a; 2. null&#xff1a;引用类型变量&#xff1a;基本类型变量&#xff1a; 3. isBlank总结&#xff1a; 前言 StringUtils 提示&#xff1a;这里可以添加本文要记录…...

UNIAPP(小程序)每十个文章中间一个广告

三十秒刷新一次广告 ad-intervals"30" <template><view style"margin: 30rpx;"><view class"" v-for"(item,index) in 100"><!-- 广告 --><view style"margin-bottom: 20rpx;" v-if"(inde…...

pip包安装用国内镜像源

一&#xff1a;临时用国内源 可以在使用pip的时候加参数-i https://pypi.tuna.tsinghua.edu.cn/simple 例如&#xff1a;pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyspider&#xff0c;这样就会从清华这边的镜像去安装pyspider库 清华&#xff1a;https://py…...

uniapp:小程序腾讯地图程序文件qqmap-wx-jssdk.js 文件一直找不到无法导入

先看问题&#xff1a; 在使用腾讯地图api时无法导入到qqmap-wx-jssdk.js文件 解决方法&#xff1a;1、打开qqmap-wx-jssdk.js最后一行 然后导入&#xff1a;这里是我的路径位置&#xff0c;可以根据自己的路径位置进行更改导入 最后在生命周期函数中输出&#xff1a; 运行效果…...

如何物理控制另一台电脑以及无网络用作副屏(现成设备和使用)

初级代码游戏的专栏介绍与文章目录-CSDN博客 我的github&#xff1a;codetoys&#xff0c;所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。 这些代码大部分以Linux为目标但部分代码是纯C的&#xff0c;可以在任何平台上使用。 控制另一台电脑有很多方法&…...

Aurora8b10b(1)IP核介绍并基于IP核进行设计

文章目录 前言一、IP核设置二、基于IP核进行设计2.1、设计框图2.2、aurora_8b10b_0模块2.3、aurora_8b10b_0_CLOCK_MODULE2.4、aurora_8b10b_0_SUPPORT_RESET_LOGIC2.5、aurora8b10b_channel模块2.6、IBUFDS_GTE2模块2.7、aurora_8b10b_0_gt_common_wrapper模块2.8、aurora8b10…...

基于Springboot的美发管理系统(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的美发管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&…...

最新测试技术

在软件测试领域,随着技术的不断进步和行业需求的变化,新的测试技术和方法不断涌现。以下是一些最新的测试技术,它们正在塑造着软件测试的未来: 人工智能和机器学习(AI/ML)在测试中的应用 人工智能和机器学习正在被集成到软件测试中,以提高测试的自动化水平和效率。AI可…...

【算法】初识算法

尽量不说废话 算法 一、数据结构二、排序算法三、检索算法四、字符算类型算法五、递归算法六、贪心算法七、动态规划八、归一化算法后记 我们这里指的算法&#xff0c;是作为程序员在计算机编程时运用到的算法。 算法是一个庞大的体系&#xff0c;主要包括以下内容&#xff1a;…...

HomeBrew 安装与应用

目录 前言一、安装 HomeBrew二、使用 HomeBrew1、使用 brew 查看已安装的软件包2、使用 brew 安装软件包3、使用 brew 升级已安装的软件包4、brew 还有哪些命令呢&#xff1f; 前言 在 macOS&#xff08;或Linux&#xff09;系统里&#xff0c;默认是没有软件包的管理器的&…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API&#xff0c;查询的是单条数据&#xff0c;比如根据主键ID查询用户信息&#xff0c;sql如下&#xff1a; select id, name, age from user where id #{id}API默认返回的数据格式是多条的&#xff0c;如下&#xff1a; {&qu…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中&#xff0c;我们渴望一个能激发创想、愉悦感官的工作与生活伙伴&#xff0c;它不仅是冰冷的科技工具&#xff0c;更能触动我们内心深处的细腻情感。正是在这样的期许下&#xff0c;华硕a豆14 Air香氛版翩然而至&#xff0c;它以一种前所未有的方式&#x…...