当前位置: 首页 > news >正文

算法:树形dp(树状dp)

文章目录

    • 一、树形DP的概念
      • 1.基本概念
      • 2.解题步骤
      • 3.树形DP数据结构
    • 二、典型例题
      • 1.LeetCode:337. 打家劫舍 III
        • 1.1、定义状态转移方程
        • 1.2、参考代码
      • 2.ACWing:285. 没有上司的舞会
        • 1.1、定义状态转移方程
        • 1.2、拓扑排序参考代码
        • 1.3、dfs后序遍历参考代码

一、树形DP的概念

  树形动态规划(Tree DP) 是动态规划在树结构数据上的应用。树是一种特殊的图,具有无环的特点,这使得树形动态规划在很多问题中比普通的动态规划更为直观和高效。在树形DP问题中,通常需要处理与节点相关的状态,并利用树的层次结构,自底向上或自顶向下递归地解决问题。树形DP的学习对线性DP的状态定义也有很大帮助。

1.基本概念

  • 状态表示:树形DP的状态通常与树的节点相关联,每个状态代表了以某节点为根的子树在某种条件下的最优解、计数或其他性质。
  • 状态转移:状态的转移依赖于子节点到父节点(或父节点到子节点)的关系。通常,要解决一个节点的问题,需要先解决它的所有子节点的问题,然后根据子节点的解来更新当前节点的解。或者当前结点的状态由父亲转移而来。

  在树形DP中,如果当前结点的状态由其子节点转移而来,那么可以进行DFS后序遍历,或者拓扑排序顺序遍历(在图中)。比如在关键路径中,提到过,求最长路径可以使用拓扑排序+动态规划来求解,这实际上就很像是一个树形DP。

2.解题步骤

  我们说树形DP的状态转移,实际上比线性DP更直观,因为父子结点之间的关系是很明显的,是从上到下的状态转移还是从下依次往下的状态转移是很明显的。

  1. 定义状态:首先明确每个状态所代表的含义,以及解题需要考虑的所有情况。
  2. 状态转移方程:根据问题的具体条件,找出不同状态之间的关系,形成状态转移方程。这通常涉及对当前节点的处理和对子节点状态的汇总。
  3. 初始化:确定递归的基本情况,即最简单情况下各状态的值,用于终止递归。
  4. 计算顺序:确定状态计算的顺序。在树形DP中,通常需要后序遍历(先处理所有子节点,再处理父节点)来自底向上计算,或者先序遍历来自顶向下传递信息。
  5. 答案提取:根据定义的状态,从根节点或特定节点提取最终答案。

3.树形DP数据结构

线性dp直接可以使用线性数组来存储状态,那么树形DP怎么办呢?

  • 如果真的只跟其亲儿子有关,你可以直接在树上进行DFS后序,利用DFS函数中存储状态,因为这不涉及到记忆化搜索
  • 如果其不仅仅跟其亲儿子有关,你就必须采取一定行动来保存状态信息了(属于一种记忆化搜索)。
  • 你可以先进行一次DFS对树结点编号(或已经有编号),然后再操作。这样你就可以定义dp数组了
  • 你可以对树结点存储在哈希表中来存储该结点状态。这样你就可以定义dp了
  • 如果需要新建图,你可以对树或图,存储其邻接表,并且每个结点多定义一个状态信息即可。若对于一个特定的顶点状态,它跟其邻接表中所有结点有关,如果其邻接表中的顶点状态已经被求出,则可以进行转移。树图不分家。vector实现邻接表
  • ···

二、典型例题

1.LeetCode:337. 打家劫舍 III

模板题
337. 打家劫舍 III
在这里插入图片描述
  父亲最优解跟其子节点最优解有关,因此属于树状dp。由于父亲的最优解不仅跟其亲儿子有关,还跟孙子有关,因此我们在进行树状dp时,不能只DFS后序遍历返回结果,我们还得存储孙子信息,即记忆化搜索,因此我们在书写这个树状dp的时候,需要使用额外空间存储状态,比如在此题中没有给出编号,使用哈希表是最快的。
  但是以上我们所说的状态是单个状态 即 dp[root]表示以root为根的最高金额,如果我们定义的状态dp[root][0]表示不选择root时的最高金额,dp[root][1]表示选择root时的最高金额,那么我们只需要将树返回值是多个值(如结构体),就可以不用多开额外空间了~

1.1、定义状态转移方程
  • dp[root][0]=max(dp[l_child][1],dp[l_child][0])+max(dp[r_child][1],dp[r_child][0]);//不被选择时
  • dp[root][1]=root->val+dp[l_child][0]+dp[r_child][0];//被选择时
    • 根不被选择时,其能得到的最大金额的状态,由其儿子不被选择的最大金额状态以及其儿子被选择的最大金额状态转移而来,因为根不被选择时,其儿子可以被选也可以不被选,让根的金额最大,那么择其最大者就行。
    • 根被选择时,其能得到的最大金额的状态,由其儿子不被选择的最大金额状态转移而来。
1.2、参考代码
class Solution {
public://pair::first表示不被选择时的最大值//pair::second表示被选择时的最大值pair<int,int> TreeDp(TreeNode * root){if(!root) return {0,0};pair<int,int> dp_left=TreeDp(root->left);pair<int,int> dp_right=TreeDp(root->right);pair<int,int> dp_root;//不被选择时dp_root.first=max(dp_left.first,dp_left.second)+max(dp_right.first,dp_right.second);//被选择时dp_root.second=root->val+dp_left.first+dp_right.first;return dp_root;}int rob(TreeNode* root) {pair<int,int> ans=TreeDp(root);return max(ans.first,ans.second);}
};

2.ACWing:285. 没有上司的舞会

模板题
285. 没有上司的舞会
在这里插入图片描述
  这题和 打家劫舍 III 基本上一摸一样呀,只不过这里可能是图,并且acwing需要自己构建结点,因此这里可以提供更多建树dp思路。

没有职员愿意和直接上司一起参会。实际上就是指相邻父子结点不能同时被选择。

1.1、定义状态转移方程

  这里我们的状态和打家劫舍III的状态一模一样。不过我们可以使用拓扑排序的方式实现,只需要存储fa数组,表示父节点,因为根结点的状态由子节点转移而来,并且没必要按顺序转移~。用邻接表存图,然后按照打家劫舍III dfs实现会简单很多。

1.2、拓扑排序参考代码
#include<bits/stdc++.h>
using namespace  std;
int main(void){ios_base::sync_with_stdio(false);cin.tie(0);int N;cin>>N;vector<int> fa(N+1,-1);//拓扑排序方法 找寻前驱用vector<int> degree(N+1,0);//用于拓扑排序删除度的数组vector<pair<int,int>> dp(N+1);//dp状态数组,second表示被选择,first表示不被选择。for(int i=1;i<=N;++i) {cin>>dp[i].second;dp[i].first=0;}for(int i=1;i<N;++i){int son,Fa;cin>>son>>Fa;fa[son]=Fa;degree[Fa]++;}//为了和打家劫舍不一样,我们这里采用拓扑排序的方式//如果仍然用dfs,则需要找到根结点,dfs会方便很多,也不需要fa数组了stack<int> sta;for(int i=1;i<=N;++i){if(degree[i]==0){sta.push(i);}}int ans=0;while(!sta.empty()){int cur=sta.top();sta.pop();if(fa[cur]!=-1) {dp[fa[cur]].first += max(dp[cur].first, dp[cur].second);dp[fa[cur]].second += dp[cur].first;if (--degree[fa[cur]] == 0) sta.push(fa[cur]);}elseans=max(ans,max(dp[cur].first,dp[cur].second));}cout<<ans;return 0;
}
1.3、dfs后序遍历参考代码
#include<bits/stdc++.h>
using namespace  std;
vector<vector<int> > g;
vector<pair<int,int>> dp;//dp状态数组,second表示被选择,first表示不被选择。
void dfs(int root){for(int i=0;i<g[root].size();++i){dfs(g[root][i]);dp[root].second+=dp[g[root][i]].first;dp[root].first+=max(dp[g[root][i]].first,dp[g[root][i]].second);}return;
}
int main(void){ios_base::sync_with_stdio(false);cin.tie(0);int N;cin>>N;g.assign(N+1,vector<int>{});dp.assign(N+1,{});//dp状态数组,second表示被选择,first表示不被选择。unordered_set<int> roots;//用于保存根for(int i=1;i<=N;++i) {cin>>dp[i].second;dp[i].first=0;roots.insert(i);}for(int i=1;i<N;++i){int son,Fa;cin>>son>>Fa;g[Fa].emplace_back(son);roots.erase(son);}int ans=0;for(auto & i:roots){dfs(i);ans+=max(dp[i].first,dp[i].second);//从不同根遍历}cout<<ans;return 0;
}

相关文章:

算法:树形dp(树状dp)

文章目录 一、树形DP的概念1.基本概念2.解题步骤3.树形DP数据结构 二、典型例题1.LeetCode&#xff1a;337. 打家劫舍 III1.1、定义状态转移方程1.2、参考代码 2.ACWing&#xff1a;285. 没有上司的舞会1.1、定义状态转移方程1.2、拓扑排序参考代码1.3、dfs后序遍历参考代码 一…...

SQL语句学习+牛客基础39SQL

什么是SQL&#xff1f; SQL (Structured Query Language:结构化查询语言) 是用于管理关系数据库管理系统&#xff08;RDBMS&#xff09;。 SQL 的范围包括数据插入、查询、更新和删除&#xff0c;数据库模式创建和修改&#xff0c;以及数据访问控制。 SQL语法 数据库表 一个…...

竞赛常考的知识点大总结(五)动态规划

DP问题的性质 动态规划&#xff08;Dynamic Programming&#xff0c;DP&#xff09;是指在解决动态规划问题时所依赖的一些基本特征和规律。动态规划是一种将复杂问题分解为更小子问题来解决的方法&#xff0c;它适用于具有重叠子问题和最优子结构性质的问题。动态规划问题通常…...

如何在 Mac 上恢复已删除的数据

如果您丢失了 Mac 上的数据&#xff0c;请不要绝望。恢复数据比您想象的要容易&#xff0c;并且有很多方法可以尝试。 在 Mac 上遭受数据丢失是每个人都认为永远不会发生在他们身上的事情之一......直到它发生。不过&#xff0c;请不要担心&#xff0c;因为您可以通过多种方法…...

Java笔试题总结

HashSet子类依靠()方法区分重复元素。 A toString(),equals() B clone(),equals() C hashCode(),equals() D getClass(),clone() 答案:C 解析: 先调用对象的hashcode方法将对象映射为数组下标,再通过equals来判断元素内容是否相同 以下程序执行的结果是&#xff1a; class X{…...

github本地仓库push到远程仓库

1.从远程仓库clone到本地 2.生成SSH秘钥&#xff0c;为push做准备 在Ubuntu命令行输入一下内容 [rootlocalhost ~]# ssh-keygen -t rsa < 建立密钥对&#xff0c;-t代表类型&#xff0c;有RSA和DSA两种 Generating public/private rsa key pair. Enter file in whi…...

Error: TF_DENORMALIZED_QUATERNION: Ignoring transform forchild_frame_id

问题 运行程序出现&#xff1a; Error: TF_DENORMALIZED_QUATERNION: Ignoring transform for child_frame_id “odom” from authority “unknown_publisher” because of an invalid quaternion in the transform (0.0 0.0 0.0 0.707) 主要是四元数没有归一化 Eigen::Quatern…...

Linux从入门到精通 --- 2.基本命令入门

文章目录 第二章&#xff1a;2.1 Linux的目录结构2.1.1 路径描述方式 2.2 Linux命令入门2.2.1 Linux命令基础格式2.2.2 ls命令2.2.3 ls命令的参数和选项2.2.4 ls命令选项的组合使用 2.3 目录切换相关命令2.3.1 cd切换工作目录2.3.2 pwd查看当前工作目录2.4 相对路径、绝对路径和…...

Redis常用命令补充和持久化

一、redis 多数据库常用命令 1.1 多数据库间切换 1.2 多数据库间移动数据 1.3 清除数据库内数据 1.4 设置密码 1.4.1 使用config set requirepass yourpassword命令设置密码 1.4.2 使用config get requirepass命令查看密码 二、redis高可用 2.1 redis 持久化 2.1.1 持…...

【记录】海康相机(SDK)二次开发时的错误码

海康相机&#xff08;SDK&#xff09;二次开发时的错误码 在进行海康sdk二次开发的时候&#xff0c;经常碰到各种错误&#xff0c;遂结合官方文档和广大网友的一些经验&#xff0c;把这些错误码记录一下&#xff0c;方便查找。笔者使用的SDK版本是HCNetSDKV6.1.9.4。 错误类型…...

端盒日记Day02

JS 本本本本本地存储 localStorage 作用&#xff1a;可以将数据永久存储在本地&#xff08;用户电脑&#xff09;&#xff0c;除非手动删除&#xff0c;否则关闭页面也会存在 特性&#xff1a;a.可多窗口&#xff08;页面&#xff09;共享&#xff08;同一浏览器可以共享&a…...

考研高数(平面图形的面积,旋转体的体积)

1.平面图形的面积 纠正&#xff1a;参数方程求面积 2.旋转体的体积&#xff08;做题时&#xff0c;若以x为自变量不好计算&#xff0c;可以求反函数&#xff0c;y为自变量进行计算&#xff09;...

选择企业邮箱,扬帆迈向商务新纪元!

企业邮箱和个人邮箱不同&#xff0c;它的邮箱后缀是企业自己的域名。企业邮箱供应商一般都提供手机app、桌面端、web浏览器访问等邮箱使用途径。那么什么是企业邮箱&#xff1f;如何选择合适的企业邮箱&#xff1f;好用的企业邮箱应具备无缝迁移、协作、多邮箱管理等功能。 企…...

2024.3.25力扣每日一题——零钱兑换2

2024.3.25 题目来源我的题解方法一 动态规划 题目来源 力扣每日一题&#xff1b;题序&#xff1a;518 我的题解 方法一 动态规划 给定总金额 amount 和数组 coins&#xff0c;要求计算金额之和等于 amount 的硬币组合数。其中&#xff0c;coins的每个元素可以选取多次&#…...

包子凑数【蓝桥杯】/完全背包

包子凑数 完全背包 完全背包问题和01背包的区别就是&#xff0c;完全背包问题每一个物品能取无限次。 思路&#xff1a;当n个数的最大公约数不为1&#xff0c;即不互质时&#xff0c;有无限多个凑不出来的&#xff0c;即n个数都可以表示成kn&#xff0c;k为常数且不为1。当n个…...

口语 4.6

drop the gun :逃避 radically 极大程度地 vastly cognition&#xff1a;认知能力 flaw缺陷 flawless&#xff1a;没有缺陷 interface&#xff1a;接口&#xff0c;交流处 retain&#xff1a;保留 down the rabbit hole&#xff1a;进入未知领域了 wrap your head aro…...

使用Docker 部署jenkins 实现自动化部署

使用Docker部署jenkins实现自动化部署ruoyi-vue docker jenkinsJava jenkinsfilevue jenkinsfileDockerfile 部署脚本Java Dockerfilenginx Dockerfilenginx-dev.conf 使用docker部署Jenkins&#xff0c;项目: https://gitee.com/y_project/RuoYi-Vue 作为部署项目示范 docker…...

golang语言系列:Web框架+路由 之 Gin

云原生学习路线导航页&#xff08;持续更新中&#xff09; 本文是golang语言学习系列&#xff0c;本篇对Gin框架的基本使用方法进行学习 1.Gin框架是什么 Gin 是一个 Go (Golang) 编写的轻量级 http web 框架&#xff0c;运行速度非常快&#xff0c;如果你是性能和高效的追求者…...

春招百题--堆

一、堆的定义 二、堆&#xff08;优先队列&#xff09; 堆通常用于实现优先队列&#xff08;priority_queue&#xff09;&#xff0c;大顶堆相当于元素按从大到小的顺序出队的优先队列。从使用角度来看&#xff0c;我们可以将“优先队列”和“堆”看作等价的数据结构。 堆的…...

全志A40i android7.1 移植wifi驱动的一般流程

一&#xff0c;问题分析 一般情况下移植一款模组&#xff0c;会涉及到驱动&#xff0c;firmware, hal层&#xff0c;方案端的适配。 下面以RTL8723ds为例详细列出移植的通用步骤。 二&#xff0c;移植步骤 1. 移植Wi-Fi驱动 从RTL原厂或者已经支持的其他把内核版本中获取驱动…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明&#xff1a; 想象一下&#xff0c;你正在用eNSP搭建一个虚拟的网络世界&#xff0c;里面有虚拟的路由器、交换机、电脑&#xff08;PC&#xff09;等等。这些设备都在你的电脑里面“运行”&#xff0c;它们之间可以互相通信&#xff0c;就像一个封闭的小王国。 但是&#…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh&#xff1f; debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

C++ 设计模式 《小明的奶茶加料风波》

&#x1f468;‍&#x1f393; 模式名称&#xff1a;装饰器模式&#xff08;Decorator Pattern&#xff09; &#x1f466; 小明最近上线了校园奶茶配送功能&#xff0c;业务火爆&#xff0c;大家都在加料&#xff1a; 有的同学要加波霸 &#x1f7e4;&#xff0c;有的要加椰果…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...