回归预测 | Matlab基于CPO-GPR基于冠豪猪算法优化高斯过程回归的多输入单输出回归预测
回归预测 | Matlab基于CPO-GPR基于冠豪猪算法优化高斯过程回归的多输入单输出回归预测
目录
- 回归预测 | Matlab基于CPO-GPR基于冠豪猪算法优化高斯过程回归的多输入单输出回归预测
- 预测效果
- 基本介绍
- 程序设计
- 参考资料
预测效果








基本介绍
Matlab基于CPO-GPR基于冠豪猪算法优化高斯过程回归的数据回归预测(完整源码和数据)
1.Matlab基于CPO-GPR基于冠豪猪算法优化高斯过程回归的输入多个特征,输出单个变量,多输入单输出回归预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.粒子群算法优化参数为:优化核函数超参数 sigma,标准差,初始噪声标准差;
5.excel数据,方便替换,运行环境2018及以上。
程序设计
- 完整程序和数据获取方式(资源处下载):Matlab基于CPO-GPR基于冠豪猪算法优化高斯过程回归的数据回归预测
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
% restoredefaultpath
%% 导入数据
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
f_ =size(P_train, 1); %输入特征维度
M = size(P_train, 2);
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 超参数设置
Best_pos = [0.6, 0.7, 30]; % 优化下界%% 仿真测试
t_sim1 = predict(net, p_train);
t_sim2 = predict(net, p_test );
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 数据转置
T_sim1=T_sim1';
T_sim2 =T_sim2';
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%
%决定系数
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%
%均方误差 MSE
mse1 = sum((T_sim1 - T_train).^2)./M;
mse2 = sum((T_sim2 - T_test).^2)./N;
%%
%RPD 剩余预测残差
SE1=std(T_sim1-T_train);
RPD1=std(T_train)/SE1;
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
SE=std(T_sim2-T_test);
RPD2=std(T_test)/SE;
%% 平均绝对误差MAE
MAE1 = mean(abs(T_train - T_sim1));
MAE2 = mean(abs(T_test - T_sim2));
%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1)./T_train));
MAPE2 = mean(abs((T_test - T_sim2)./T_test));
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 测试集误差图
figure
ERROR3=T_test-T_sim2;
plot(T_test-T_sim2,'b-*','LineWidth',1.5)
xlabel('测试集样本编号')
ylabel('预测误差')
title('测试集预测误差')
grid on;
legend('GPR预测输出误差')
%% 打印出评价指标
disp(['-----------------------误差计算--------------------------'])
disp(['评价结果如下所示:'])
disp(['平均绝对误差MAE为:',num2str(MAE2)])
disp(['均方误差MSE为: ',num2str(mse2)])
disp(['均方根误差RMSEP为: ',num2str(error2)])
disp(['决定系数R^2为: ',num2str(R2)])
disp(['剩余预测残差RPD为: ',num2str(RPD2)])
disp(['平均绝对百分比误差MAPE为: ',num2str(MAPE2)])
参考资料
[1]https://blog.csdn.net/kjm13182345320/article/details/124443069?spm=1001.2014.3001.5501
[2]https://blog.csdn.net/kjm13182345320/article/details/124443735?spm=1001.2014.3001.5501
相关文章:
回归预测 | Matlab基于CPO-GPR基于冠豪猪算法优化高斯过程回归的多输入单输出回归预测
回归预测 | Matlab基于CPO-GPR基于冠豪猪算法优化高斯过程回归的多输入单输出回归预测 目录 回归预测 | Matlab基于CPO-GPR基于冠豪猪算法优化高斯过程回归的多输入单输出回归预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Matlab基于CPO-GPR基于冠豪猪算法优化高斯…...
python 日期字符串转换为指定格式的日期
在Python编程中,日期处理是一个常见的任务。我们经常需要将日期字符串转换为Python的日期对象,以便进行日期的计算、比较或其他操作。同时,为了满足不同的需求,我们还需要将日期对象转换为指定格式的日期字符串。本文将详细介绍如…...
day03-Docker
1.初识 Docker 1.1.什么是 Docker 1.1.1.应用部署的环境问题 大型项目组件较多,运行环境也较为复杂,部署时会碰到一些问题: 依赖关系复杂,容易出现兼容性问题开发、测试、生产环境有差异 例如一个项目中,部署时需要依…...
C语言函数实现冒泡排序
前言 今天我们来看看怎么使用函数的方式实现冒泡排序吧,我们以一个数组为例arr[] {9,8,7,6,5,4,3,2,1,0},我们将这个数组通过冒泡排序的方式让他变为升序吧。 代码实现 #include<stdio.h> void bubble_sort(int arr[], int sz) {int i 0;for (i 0;i < s…...
区间概率预测python|QR-CNN-BiLSTM+KDE分位数-卷积-双向长短期记忆神经网络-时间序列区间概率预测+核密度估计
区间预测python|QR-CNN-BiLSTMKDE分位数-卷积-双向长短期记忆神经网络-核密度估计-回归时间序列区间预测 模型输出展示: (图中是只设置了20次迭代的预测结果,宽度较宽,可自行修改迭代参数,获取更窄的预测区间) 注&am…...
Java 分支结构 - if…else/switch
顺序结构只能顺序执行,不能进行判断和选择,因此需要分支结构。 Java有两种分支结构: if语句switch语句 if语句 一个if语句包含一个布尔表达式和一条或多条语句。 语法 If 语句的用语法如下: if(布尔表达式) {//如果布尔表达…...
【Unity每日一记】如何从0到1将特效图集制作成一个特效
👨💻个人主页:元宇宙-秩沅 👨💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨💻 本文由 秩沅 原创 👨💻 收录于专栏:Uni…...
磁力链接的示例与解释
磁力链接(Magnet URI scheme)是一种特殊类型的统一资源标识符(URI),它包含了通过特定散列函数(如SHA-1)得到的文件内容的散列值,而不是基于位置或名称的引用。这使得磁力链接成为在分…...
云存储中常用的相同子策略的高效、安全的基于属性的访问控制的论文阅读
参考文献为2022年发表的Efficient and Secure Attribute-Based Access Control With Identical Sub-Policies Frequently Used in Cloud Storage 动机 ABE是实现在云存储中一种很好的访问控制手段,但是其本身的计算开销导致在实际场景中应用收到限制。本论文研究了一种LSSS矩…...
JVM高级篇之GC
文章目录 版权声明垃圾回收器的技术演进ShenandoahShenandoah GC体验Shenandoah GC循环过程 ZGCZGC简介ZGC的版本更迭ZGC体验&使用ZGC的参数设置ZGC的调优 版权声明 本博客的内容基于我个人学习黑马程序员课程的学习笔记整理而成。我特此声明,所有版权属于黑马…...
第十四届蓝桥杯省赛大学C组(C/C++)三国游戏
原题链接:三国游戏 小蓝正在玩一款游戏。 游戏中魏蜀吴三个国家各自拥有一定数量的士兵 X,Y,Z(一开始可以认为都为 0)。 游戏有 n 个可能会发生的事件,每个事件之间相互独立且最多只会发生一次,当第 i 个事件发生时…...
java之static详细总结
static也叫静态,可以修饰成员变量、成员方法。 成员变量 按照有无static分为两种: 类变量:static修饰,属于类,与类一起加载一次,在内存中只有一份,会被类的全部对象共享实例变量(…...
RabbitMQ3.13.x之六_RabbitMQ使用场景
RabbitMQ3.13.x之六_RabbitMQ使用场景 文章目录 RabbitMQ3.13.x之六_RabbitMQ使用场景1. 为什么选择 RabbitMQ?1. 可互操作2. 灵活3. 可靠 2. 常见用户案例1. 服务解耦2. 远程过程调用3. 流处理4. 物联网 1. 为什么选择 RabbitMQ? RabbitMQ 是一个可靠且…...
C++ 类和对象(初篇)
类的引入 C语言中,结构体中只能定义变量,在C中,结构体内不仅可以定义变量,也可以定义函数。 而为了区分C和C我们将结构体重新命名成class去定义 类的定义 标准格式: class className {// 类体:由成员函…...
微软推出GPT-4 Turbo优先使用权:Copilot for Microsoft 365商业用户享受无限制对话及增强图像生成能力
每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…...
Spring Boot Actuator
概述 Spring Boot Actuator是Spring Boot的一个功能模块,用于提供生产环境中常见的监控和管理功能。它提供了各种端点(endpoints),可以用于监视应用程序的运行状况、收集应用程序的指标数据以及与应用程序进行交互。 以下是Spri…...
我与C++的爱恋:类与对象(一)
🔥个人主页:guoguoqiang. 🔥专栏:我与C的爱恋 C语言是面向过程的,关注的是过程,分析出求解问题的步骤,通过函数调用逐步解决问题。 C是基于面向对象的,关注的是对象&…...
os模块篇(十八)
文章目录 os._exit(n)os.forkpty()os.kill(pid, sig, /)os.killpg(pgid, sig, /)os.nice(increment, /)os.pidfd_open(pid, flags0)os.plock(op, /)os.popen(cmd, moder, buffering-1)os.posix_spawn(path, argv, env, *, file_actionsNone, setpgroupNone, resetidsFalse, set…...
Oracle 数据库工作中常用知识点:sql语法与常用函数
.to_date()函数 to_date函数是Oracle特有的函数,该函数用来做日期转换。 举例: SELECT TO_DATE(‘2006-05-01 19:25:34’, ‘YYYY-MM-DD HH24:MI:SS’) FROM DUAL 日期格式: YYYY、YYY、YY 分别代表4位、3位、2位的数字年 …...
软件工程
开发模型 瀑布模型 用于结构化模型开发 适用需求明确或者二次开发 原型模型 适用需求不明确 演化模型 增量模型 适用需求不明确 先做一块,再做一块,这样不断的对核心功能的审视,降低风险 螺旋模型 由多个模型组合成 适用需求不明…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...
C++ 设计模式 《小明的奶茶加料风波》
👨🎓 模式名称:装饰器模式(Decorator Pattern) 👦 小明最近上线了校园奶茶配送功能,业务火爆,大家都在加料: 有的同学要加波霸 🟤,有的要加椰果…...
「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案
在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。 一、系统核心功能架构&…...
Vue3中的computer和watch
computed的写法 在页面中 <div>{{ calcNumber }}</div>script中 写法1 常用 import { computed, ref } from vue; let price ref(100);const priceAdd () > { //函数方法 price 1price.value ; }//计算属性 let calcNumber computed(() > {return ${p…...
aurora与pcie的数据高速传输
设备:zynq7100; 开发环境:window; vivado版本:2021.1; 引言 之前在前面两章已经介绍了aurora读写DDR,xdma读写ddr实验。这次我们做一个大工程,pc通过pcie传输给fpga,fpga再通过aur…...
