当前位置: 首页 > news >正文

回归预测 | Matlab基于CPO-GPR基于冠豪猪算法优化高斯过程回归的多输入单输出回归预测

回归预测 | Matlab基于CPO-GPR基于冠豪猪算法优化高斯过程回归的多输入单输出回归预测

目录

    • 回归预测 | Matlab基于CPO-GPR基于冠豪猪算法优化高斯过程回归的多输入单输出回归预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

Matlab基于CPO-GPR基于冠豪猪算法优化高斯过程回归的数据回归预测(完整源码和数据)
1.Matlab基于CPO-GPR基于冠豪猪算法优化高斯过程回归的输入多个特征,输出单个变量,多输入单输出回归预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.粒子群算法优化参数为:优化核函数超参数 sigma,标准差,初始噪声标准差;
5.excel数据,方便替换,运行环境2018及以上。

程序设计

  • 完整程序和数据获取方式(资源处下载):Matlab基于CPO-GPR基于冠豪猪算法优化高斯过程回归的数据回归预测
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
% restoredefaultpath
%%  导入数据
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
f_ =size(P_train, 1); %输入特征维度
M = size(P_train, 2);
N = size(P_test, 2);
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  超参数设置
Best_pos = [0.6, 0.7, 30];    % 优化下界%%  仿真测试
t_sim1 = predict(net, p_train);
t_sim2 = predict(net, p_test );
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 数据转置
T_sim1=T_sim1';
T_sim2 =T_sim2';
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%
%决定系数
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%
%均方误差 MSE
mse1 = sum((T_sim1 - T_train).^2)./M;
mse2 = sum((T_sim2 - T_test).^2)./N;
%%
%RPD 剩余预测残差
SE1=std(T_sim1-T_train);
RPD1=std(T_train)/SE1;
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
SE=std(T_sim2-T_test);
RPD2=std(T_test)/SE;
%% 平均绝对误差MAE
MAE1 = mean(abs(T_train - T_sim1));
MAE2 = mean(abs(T_test - T_sim2));
%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1)./T_train));
MAPE2 = mean(abs((T_test - T_sim2)./T_test));
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 测试集误差图
figure  
ERROR3=T_test-T_sim2;
plot(T_test-T_sim2,'b-*','LineWidth',1.5)
xlabel('测试集样本编号')
ylabel('预测误差')
title('测试集预测误差')
grid on;
legend('GPR预测输出误差')
%% 打印出评价指标
disp(['-----------------------误差计算--------------------------'])
disp(['评价结果如下所示:'])
disp(['平均绝对误差MAE为:',num2str(MAE2)])
disp(['均方误差MSE为:       ',num2str(mse2)])
disp(['均方根误差RMSEP为:  ',num2str(error2)])
disp(['决定系数R^2为:  ',num2str(R2)])
disp(['剩余预测残差RPD为:  ',num2str(RPD2)])
disp(['平均绝对百分比误差MAPE为:  ',num2str(MAPE2)])

参考资料

[1]https://blog.csdn.net/kjm13182345320/article/details/124443069?spm=1001.2014.3001.5501
[2]https://blog.csdn.net/kjm13182345320/article/details/124443735?spm=1001.2014.3001.5501

相关文章:

回归预测 | Matlab基于CPO-GPR基于冠豪猪算法优化高斯过程回归的多输入单输出回归预测

回归预测 | Matlab基于CPO-GPR基于冠豪猪算法优化高斯过程回归的多输入单输出回归预测 目录 回归预测 | Matlab基于CPO-GPR基于冠豪猪算法优化高斯过程回归的多输入单输出回归预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Matlab基于CPO-GPR基于冠豪猪算法优化高斯…...

python 日期字符串转换为指定格式的日期

在Python编程中,日期处理是一个常见的任务。我们经常需要将日期字符串转换为Python的日期对象,以便进行日期的计算、比较或其他操作。同时,为了满足不同的需求,我们还需要将日期对象转换为指定格式的日期字符串。本文将详细介绍如…...

day03-Docker

1.初识 Docker 1.1.什么是 Docker 1.1.1.应用部署的环境问题 大型项目组件较多,运行环境也较为复杂,部署时会碰到一些问题: 依赖关系复杂,容易出现兼容性问题开发、测试、生产环境有差异 例如一个项目中,部署时需要依…...

C语言函数实现冒泡排序

前言 今天我们来看看怎么使用函数的方式实现冒泡排序吧&#xff0c;我们以一个数组为例arr[] {9,8,7,6,5,4,3,2,1,0},我们将这个数组通过冒泡排序的方式让他变为升序吧。 代码实现 #include<stdio.h> void bubble_sort(int arr[], int sz) {int i 0;for (i 0;i < s…...

区间概率预测python|QR-CNN-BiLSTM+KDE分位数-卷积-双向长短期记忆神经网络-时间序列区间概率预测+核密度估计

区间预测python|QR-CNN-BiLSTMKDE分位数-卷积-双向长短期记忆神经网络-核密度估计-回归时间序列区间预测 模型输出展示&#xff1a; (图中是只设置了20次迭代的预测结果&#xff0c;宽度较宽&#xff0c;可自行修改迭代参数&#xff0c;获取更窄的预测区间&#xff09; 注&am…...

Java 分支结构 - if…else/switch

顺序结构只能顺序执行&#xff0c;不能进行判断和选择&#xff0c;因此需要分支结构。 Java有两种分支结构&#xff1a; if语句switch语句 if语句 一个if语句包含一个布尔表达式和一条或多条语句。 语法 If 语句的用语法如下&#xff1a; if(布尔表达式) {//如果布尔表达…...

【Unity每日一记】如何从0到1将特效图集制作成一个特效

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;Uni…...

磁力链接的示例与解释

磁力链接&#xff08;Magnet URI scheme&#xff09;是一种特殊类型的统一资源标识符&#xff08;URI&#xff09;&#xff0c;它包含了通过特定散列函数&#xff08;如SHA-1&#xff09;得到的文件内容的散列值&#xff0c;而不是基于位置或名称的引用。这使得磁力链接成为在分…...

云存储中常用的相同子策略的高效、安全的基于属性的访问控制的论文阅读

参考文献为2022年发表的Efficient and Secure Attribute-Based Access Control With Identical Sub-Policies Frequently Used in Cloud Storage 动机 ABE是实现在云存储中一种很好的访问控制手段,但是其本身的计算开销导致在实际场景中应用收到限制。本论文研究了一种LSSS矩…...

JVM高级篇之GC

文章目录 版权声明垃圾回收器的技术演进ShenandoahShenandoah GC体验Shenandoah GC循环过程 ZGCZGC简介ZGC的版本更迭ZGC体验&使用ZGC的参数设置ZGC的调优 版权声明 本博客的内容基于我个人学习黑马程序员课程的学习笔记整理而成。我特此声明&#xff0c;所有版权属于黑马…...

第十四届蓝桥杯省赛大学C组(C/C++)三国游戏

原题链接&#xff1a;三国游戏 小蓝正在玩一款游戏。 游戏中魏蜀吴三个国家各自拥有一定数量的士兵 X,Y,Z&#xff08;一开始可以认为都为 0&#xff09;。 游戏有 n 个可能会发生的事件&#xff0c;每个事件之间相互独立且最多只会发生一次&#xff0c;当第 i 个事件发生时…...

java之static详细总结

static也叫静态&#xff0c;可以修饰成员变量、成员方法。 成员变量 按照有无static分为两种&#xff1a; 类变量&#xff1a;static修饰&#xff0c;属于类&#xff0c;与类一起加载一次&#xff0c;在内存中只有一份&#xff0c;会被类的全部对象共享实例变量&#xff08;…...

RabbitMQ3.13.x之六_RabbitMQ使用场景

RabbitMQ3.13.x之六_RabbitMQ使用场景 文章目录 RabbitMQ3.13.x之六_RabbitMQ使用场景1. 为什么选择 RabbitMQ&#xff1f;1. 可互操作2. 灵活3. 可靠 2. 常见用户案例1. 服务解耦2. 远程过程调用3. 流处理4. 物联网 1. 为什么选择 RabbitMQ&#xff1f; RabbitMQ 是一个可靠且…...

C++ 类和对象(初篇)

类的引入 C语言中&#xff0c;结构体中只能定义变量&#xff0c;在C中&#xff0c;结构体内不仅可以定义变量&#xff0c;也可以定义函数。 而为了区分C和C我们将结构体重新命名成class去定义 类的定义 标准格式&#xff1a; class className {// 类体&#xff1a;由成员函…...

微软推出GPT-4 Turbo优先使用权:Copilot for Microsoft 365商业用户享受无限制对话及增强图像生成能力

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…...

Spring Boot Actuator

概述 Spring Boot Actuator是Spring Boot的一个功能模块&#xff0c;用于提供生产环境中常见的监控和管理功能。它提供了各种端点&#xff08;endpoints&#xff09;&#xff0c;可以用于监视应用程序的运行状况、收集应用程序的指标数据以及与应用程序进行交互。 以下是Spri…...

我与C++的爱恋:类与对象(一)

​ ​ &#x1f525;个人主页&#xff1a;guoguoqiang. &#x1f525;专栏&#xff1a;我与C的爱恋 ​C语言是面向过程的&#xff0c;关注的是过程&#xff0c;分析出求解问题的步骤&#xff0c;通过函数调用逐步解决问题。 C是基于面向对象的&#xff0c;关注的是对象&…...

os模块篇(十八)

文章目录 os._exit(n)os.forkpty()os.kill(pid, sig, /)os.killpg(pgid, sig, /)os.nice(increment, /)os.pidfd_open(pid, flags0)os.plock(op, /)os.popen(cmd, moder, buffering-1)os.posix_spawn(path, argv, env, *, file_actionsNone, setpgroupNone, resetidsFalse, set…...

Oracle 数据库工作中常用知识点:sql语法与常用函数

.to_date()函数 to_date函数是Oracle特有的函数&#xff0c;该函数用来做日期转换。 举例&#xff1a; SELECT TO_DATE(‘2006-05-01 19:25:34’, ‘YYYY-MM-DD HH24:MI:SS’) FROM DUAL   日期格式&#xff1a;     YYYY、YYY、YY 分别代表4位、3位、2位的数字年    …...

软件工程

开发模型 瀑布模型 用于结构化模型开发 适用需求明确或者二次开发 原型模型 适用需求不明确 演化模型 增量模型 适用需求不明确 先做一块&#xff0c;再做一块&#xff0c;这样不断的对核心功能的审视&#xff0c;降低风险 螺旋模型 由多个模型组合成 适用需求不明…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业&#xff0c;项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升&#xff0c;传统的管理模式已经难以满足现代工程的需求。过去&#xff0c;许多企业依赖手工记录、口头沟通和分散的信息管理&#xff0c;导致效率低下、成本失控、风险频发。例如&#…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题

分区配置 (ptab.json) img 属性介绍&#xff1a; img 属性指定分区存放的 image 名称&#xff0c;指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件&#xff0c;则以 proj_name:binary_name 格式指定文件名&#xff0c; proj_name 为工程 名&…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲

文章目录 前言第一部分&#xff1a;体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分&#xff1a;体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...