当前位置: 首页 > news >正文

第12届蓝桥杯省赛 ---- C/C++ C组

文章目录

  • 1. ASC
  • 2. 空间
  • 3. 卡片
  • 4. 相乘
  • 5. 路径
  • 6.时间显示
  • 7.最少砝码
  • 8. 杨辉三角形
  • 9. 左孩子右兄弟

第12届蓝桥杯省赛,C/C++ C组真题,第10题不是很清楚,题解不敢乱放😁😁😁

1. ASC

在这里插入图片描述
额。。。。

#include <iostream>
using namespace std;
int main()
{printf("%d\n",'L');return 0;
}

2. 空间

在这里插入图片描述

  • 甲骨文(🤣🤣):一切的开始好吧。 – 一个字节等于8个比特位
  • 1B = 8bit;
  • 1KB = 1024B
  • 1MB = 1024KB
  • 1GB = 1024MB
  • 1 TB = 1024GB
  • 打住吧,够用了。

在这道题中告诉我们256MB,我们知道32位,在C/C++中一个int是正好4个字节,也就是32个bit。
所以直接256 * 1024 * 1024 / 4就是答案。
当然也可以全部换算成bit位来算,256 * 1024 * 1024 * 8 / 32但要注意开long long

#include <iostream>
using namespace std;int main()
{//1个字节 = 8个bit位//1B = 8个bit。//1KB = 1024B。//1MB = 1024KB//1GB = 1024MB;// int = 4个字节, = 32位printf("%d\n",256 * 1024 * 1024 / 4);//printf("%lld\n",(long long)256 * 1024 * 1024 * 8 / 32);return 0;
}

3. 卡片

在这里插入图片描述
题目要求从给定的0~9 共2021张卡片,然后问我们最多能拼到哪里?
比如例子中1~9各有三张。 1 ~ 10 已经浪费了两个1, 11还需要两个1,所以拼不成,答案就是10.
填空题,不卡时间,也不用在意时间复杂度了,只要你程序没写死循环,你可以永远相信computer的速度,暴力就好了。

#include <iostream>
using namespace std;int h[10];int main()
{for (int i = 0; i <= 9; i++)h[i] = 2021;for (int i = 1; true; i++){int t = i;while (t){int dig = t % 10;if (!h[dig])	//卡片用完了	h[dig] == 0{printf("%d\n", i - 1);	//注意是返回前一个构造好的,不是当前的return 0;}h[dig]--;	//减去这一位的次数。t /= 10;}}return 0;
}

4. 相乘

在这里插入图片描述
直接对题目进行模拟,看到这么大的数,我的建议是不管3721直接转long long

#include <iostream>
using namespace std;typedef long long LL;int main()
{for (int i = 1; i <= 1000000007; i++){if ((LL)i * 2021 % 1000000007 == 999999999){printf("%lld\n", i);break;}}   return 0;
}

5. 路径

在这里插入图片描述
求1 ~ 2021直接的最短路,然后边的话,如果两点之间的绝对值小于21的话就是他俩的最小公倍数,如果大于21的话就没有边。

  1. 创图
  2. 求最短路

填空题,代码有点搓,海涵。
最小公倍数 = a * b / 最大公约数。
这一道题全是模板。

#include <bits/stdc++.h>
using namespace std;const int N = 1e6 + 10, INF = 0x3f3f3f3f;typedef pair<int, int> PII;int h[N], e[N], w[N], ne[N], idx;
int dist[2100];
bool st[2100];int gcd(int a, int b);
int lcm(int a, int b);void Add(int a, int b, int c)
{e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}void Dijkstra()
{memset(dist, 0x3f, sizeof dist);dist[1] = 0;priority_queue<PII, vector<PII>, greater<PII> > heap;heap.push({ 0, 1 });while (heap.size()){auto t = heap.top();heap.pop();int v = t.second;if (st[v])  continue;st[v] = true;for (int i = h[v]; i != -1; i = ne[i]){int j = e[i];if (dist[j] > dist[v] + w[i]){dist[j] = dist[v] + w[i];heap.push({ dist[j], j });}}}
}int main()
{//创建图memset(h, -1, sizeof h);for (int i = 1; i <= 2021; i++){for (int j = i + 1; j <= 2021; j++){if (abs(i - j) <= 21){int t = lcm(i, j);Add(i, j, t);}}}//Dijkstra();if (dist[2021] == INF)printf("找不到\n");elseprintf("%d\n", dist[2021]);return 0;
}int gcd(int a, int b)
{return b ? gcd(b, a % b) : a;
}
int lcm(int a, int b)
{return a * b / gcd(a, b);
}

6.时间显示

在这里插入图片描述
题目要求:
给我们一个毫秒数,因为不用管年份和毫秒,所以我们只需要计算出多余的东西就好了。
基础的时间换算知识就能解决这题

  • 1秒 = 1000毫秒
  • 1分钟 = 60秒
  • 1 小时 = 60分钟
  • 1 天 = 24小时。

要注意输出格式,小于10的数前面需要加0。

#include <bits/stdc++.h>
using namespace std;typedef long long LL;int main()
{LL sum;scanf("%lld",&sum);sum /= 1000;	//int h = sum % (60*60*24) / (60*60);int t = sum % (60*60) / 60;int s = sum % 60;if (h < 10)printf("0%d:", h);elseprintf("%d:",h);if (t < 10)printf("0%d:", t);elseprintf("%d:",t);if (s < 10)printf("0%d", s);elseprintf("%d",s);return 0;
}

7.最少砝码

在这里插入图片描述
在这里插入图片描述
题目要求:
输入一个整数n,要求我们从1~n之内选出最少的数像一个天平那样表示其中的所有数。
思路:
水个题解把,3进制什么鬼,用三进制能表示的数只要 >= 所给定的范围,那么其的幂就是最少数的个数。
不行看看别人的题解,Acwing和蓝桥杯官网都有题解。
传送门~~~~~~~

#include <bits/stdc++.h>
using namespace std;typedef long long LL;int main()
{LL x,sum = 0;int res = 0;scanf("%lld", &x);while (sum < x){sum += pow(3, res++);}printf("%d\n", res);return 0;
}

8. 杨辉三角形

在这里插入图片描述
题目要求:
给我们一个数,然后求其在杨辉三角中的第几位。
思路:
暴力枚举:
杨辉三角都会构造,我们预处理出来前1000行的杨辉三角,最多1000行,多了会爆。
然后一一枚举就好了。可以过40%的测试用例

#include <bits/stdc++.h>using namespace std;const int N = 1e3 + 10;int n = 1000;
int a[N][N];int main()
{a[1][1] = 1;for (int i = 2; i <= n; i ++) for (int j = 1; j <= i; j ++)a[i][j] = a[i - 1][j] + a[i - 1][j - 1];int x;scanf("%d", &x);int cnt = 0;for (int i = 1; i <= n; i ++) for (int j = 1; j <= i; j ++){cnt ++;if (a[i][j] == x) {printf("%d\n",cnt);return 0;}}       return 0;
}

二分 + 找规律
观察下图我们可以发现杨辉三角其实是一个对称的,所以我们只对其进行一半的操作就好了。
我们就可以对其进行二分的操作了,很妙!!!。
这个是视频题解y总真的讲的非常的详细。
在这里插入图片描述

#include <bits/stdc++.h>using namespace std;typedef long long LL;LL n;LL C(int a, int b)
{LL res = 1;for (int i = a, j = 1; j <= b; i--, j++){res = res * i / j;if (res > n)return res;}return res;
}bool check(int k)
{// l 是下限, r 是上限 LL l = 2 * k, r = max(l, n); while (l < r){int mid = l + r >> 1;if (C(mid,k) >= n)r = mid;elsel = mid + 1;}//二分完成之后r == l 是下限 if (C(r,k) != n)	return false;printf("%lld\n", r * (r + 1) / 2 + k + 1);return true;
} int main()
{scanf("%lld", &n);// k 枚举的上限 for (int k = 16; ; k--){if (check(k))break;}return 0;
}

9. 左孩子右兄弟

在这里插入图片描述

题目要求:
给我构造一棵树,然后将其转化为左孩子有兄弟的表示方式方式,使其的深度最大。
左孩子右兄弟,

  • 左孩子,就是将r节点的左孩子变成原本节点的孩子其中任意一个,没有的话就空着。
  • 右兄弟呢,就是r节点的兄弟,如果没有兄弟节点,右孩子也空着。

蓝桥的题目没有图片,可以去Acwing上也有这道题目,并且有图片。
在这里插入图片描述
思路:
我们其实通过这张图就可以发现,只需要将其孩子最多的那个子树放在最后就可以是整棵树拉长了,而右孩子永远是右兄弟。
所以最大深度 = 子节点的数量 + 子节点所能形成的最大深度。
个人感觉有点那个树形dp的感觉。
另外注意题目中说只有一个节点的高度为0,这与我们平时所学的数据结构不一样,我们所学的只有一个节点,树的高度是1.
所以只需要在最后的时候将答案减去1就好了。
也可以在dfs函数中将高度最开始1赋值成0都可以。

#include <bits/stdc++.h>
using namespace std;const int N = 1e5 + 10;int n;
int h[N], e[N], ne[N], idx;void Add(int a, int b)
{e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}int dfs(int r)
{int hmax = 1, cnt = 0;  //hmax 为所子节点的最大高度, cnt为字节点的数量for (int i = h[r]; i != -1; i = ne[i]){int j = e[i];hmax = max(hmax, dfs(j));cnt++;}return hmax + cnt;
}int main()
{scanf("%d", &n);memset(h, -1, sizeof h);for (int i = 2; i <= n; i++){int p;scanf("%d", &p);Add(p, i);}printf("%d\n", dfs(1) - 1);return 0;
}

相关文章:

第12届蓝桥杯省赛 ---- C/C++ C组

文章目录 1. ASC2. 空间3. 卡片4. 相乘5. 路径6.时间显示7.最少砝码8. 杨辉三角形9. 左孩子右兄弟 第12届蓝桥杯省赛&#xff0c;C/C C组真题&#xff0c;第10题不是很清楚&#xff0c;题解不敢乱放&#x1f601;&#x1f601;&#x1f601; 1. ASC 额。。。。 #include <i…...

IVS模型解释

核心思路 【Implied volatility surface predictability: The case of commodity markets】 半参数化模型&#xff1a;利用各种参数(或者因子)对隐含波动率进行降维&#xff08;静态参数化因子模型&#xff09;&#xff0c;对参数化因子的时间序列进行间接的建模 基于非对称…...

通用开发技能系列:Git

云原生学习路线导航页&#xff08;持续更新中&#xff09; 本文是 通用开发技能系列 文章&#xff0c;主要对编程通用技能Git进行学习 1.为什么使用版本控制系统 版本控制系统可以解决的问题 代码备份很重要版本控制很重要协同工作很重要责任追溯很重要 常见的版本控制系统 Gi…...

最新怎么订阅OnlyFans上喜欢的博主,详细教程

大家好&#xff0c;本文教大家如何用虚拟信用卡在 Onlyfans 订阅&#xff0c;链接在浏览器打开地址https://bewildcard.com/i/GPT310&#xff0c;虚拟卡开好之后&#xff0c;用支付宝充值就可以进行订阅OnlyFans平台的博主了。 什么是OnlyFans&#xff1f; OnlyFans 是一个提…...

Mysql故障和优化

一、MySQL故障 二、MySQL优化 1.硬件优化&#xff1a; 2.数据库设计与规划 1.提前估计数据量&#xff0c;使用什么存储引擎 2.数据库服务器专机专用&#xff0c;避免额外的服务可能导致的性能下降和不稳定性 3.增加多台服务器&#xff0c;以达到稳定、高效的效果。主从同步、…...

Windows系统C盘空间优化进阶:磁盘清理与Docker日志管理

Windows系统C盘空间优化进阶&#xff1a;磁盘清理与Docker日志管理 文章目录 Windows系统C盘空间优化进阶&#xff1a;磁盘清理与Docker日志管理磁盘清理工具 使用“运行”命令访问磁盘清理利用存储感知自动管理空间清理WinSxS文件夹结合手动清理策略 小结删除临时文件总结&…...

14届蓝桥杯 C/C++ B组 T7 子串简写 (字符串)

采用存储目标字符下标的方法&#xff0c;此题的想法比较新奇&#xff0c;故予以记录。 存好下标之后&#xff0c;可以先定位好启始的字符&#xff0c;然后去搜结尾字符符合长度k并且最靠近启始字符的下标&#xff0c;找到之后可以直接取到这个下标之后的所有下标&#xff0c;因…...

Android 系统大致启动流程

Android启动流程大体为&#xff1a;BootRom -> BootLoader -> Kernel -> Init -> Zygote -> SystemServer ->Launcher 1、Loader层 1.1、Boot ROM 电源按下&#xff0c;引导芯片代码开始从预定义的地方&#xff08;固化在ROM&#xff09;开始执行&#xff0…...

【Web】2024红明谷CTF初赛个人wp(2/4)

目录 ezphp playground 时间原因只打了2个小时&#xff0c;出了2道&#xff0c;简单记录一下 ezphp 参考文章 PHP filter chains: file read from error-based oracle https://github.com/synacktiv/php_filter_chains_oracle_exploit 用上面的脚本爆出部分源码&#xff…...

stable-diffusion-webui安装教程

现在AI开始进入绘画领域,并且能自动根据文本来创建图片出来,这是一个划时代的进步。 这时候,我也不能落后,要紧跟上时代的步伐,那么也来学习一下stable-diffusion的使用,这样也算多一项对技术的认识,提高对AI的认知。 从网上看到很多stable-diffusion-webui的安装,其…...

如何魔改 diffusers 中的 pipelines

如何魔改 diffusers 中的 pipelines 整个 Stable Diffusion 及其 pipeline 长得就很适合 hack 的样子。不管是通过简单地调整采样过程中的一些参数&#xff0c;还是直接魔改 pipeline 内部甚至 UNet 内部的 Attention&#xff0c;都可以实现很多有趣的功能或采样生图结果。 本…...

解放办公室的利器!让证卡打印机轻松应对繁忙工作场景

在现代办公室中&#xff0c;证卡打印机已经成为不可或缺的工作利器。但是&#xff0c;在繁忙的工作场景中&#xff0c;我们经常忽视了它的保养和清洁。然而&#xff0c;正确的清洁和维护不仅可以延长打印机的寿命&#xff0c;还可以提高工作效率&#xff0c;确保每一次打印都是…...

2012年认证杯SPSSPRO杯数学建模A题(第二阶段)蜘蛛网全过程文档及程序

2012年认证杯SPSSPRO杯数学建模 A题 蜘蛛网 原题再现&#xff1a; 第二阶段问题   现在我们假设一个具体的环境。假设有一个凸多边形的区域&#xff0c;蜘蛛准备在这个区域&#xff08;或其一部分&#xff09;上结一张网。   问题一&#xff1a; 在区域的边界上安置有若干…...

ES学习日记(七)-------Kibana安装和简易使用

前言 首先明确一点&#xff0c;Kibana是一个软件&#xff0c;不是插件。 Kibana 是一款开源的数据分析和可视化平台&#xff0c;它是 Elastic stack 成员之一&#xff0c;设计用于和Elasticsearch 协作。您可以使用 Kibana 对 Elasticsearch 索引中的数据进行搜索&#xff0c;…...

react 父子组件的渲染机制 | 优化手段

文章目录 父子组件的渲染机制优化手段与实践写法父组件&#xff1a;下发stateprops.children 传递无状态组件props传递组件 React.memo缓存子组件与useCallback结合 父子组件的渲染机制 渲染分初次渲染和重新渲染 React组件会在两种情况下发生重新渲染 当组件自身的state发生…...

elementPlus el-table动态列扩展及二维表格

1、循环列数据源&#xff0c;动态生成列 <template><div><el-table ref"table" :data"pageData.tableData" stripe style"width: 100%"><el-table-column v-for"column in pageData.columns" :key"column.p…...

vitepress系列-04-规整sideBar左侧菜单导航

规整左侧菜单导航 新建navConfig.ts 文件用来管理左侧导航菜单&#xff1a; 将于其他的配置分开&#xff0c;避免config.mts太大 在config目录下&#xff0c;新建 sidebarModules文件目录用来左侧导航菜单 按模块进行分类&#xff1a; 在config下新建sidebarConfig.ts文件&…...

golang slice总结

目录 概述 一、什么是slice 二、slice的声明 三、slice的初始化、创建 make方式创建 创建一个包含指定长度的切片 创建一个指定长度和容量的切片 创建一个空切片 创建一个长度和容量都为 0 的切片 new方式创建 短声明初始化切片 通过一个数组来创建切片 声明一个 …...

MySQL 数据库的优化

目录 一. 常见故障 单实例常见故障 1. 故障一 2. 故障二 3.故障三 4. 故障四 5. 故障五 6.故障六 7.故障七 8.故障八 主从环境常见故障 1.故障一 2. 故障二 3. 故障三 二. 优化 1.硬件方面 1.1 关于CPU 1.2 关于内存 1.3 关于磁盘 2. 配置文件优化 关于引擎…...

Redis 的主从复制、哨兵和cluster集群

目录 一. Redis 主从复制 1. 介绍 2. 作用 3. 流程 4. 搭建 Redis 主从复制 安装redis 修改 master 的Redis配置文件 修改 slave 的Redis配置文件 验证主从效果 二. Redis 哨兵模式 1. 介绍 2. 原理 3. 哨兵模式的作用 4. 工作流程 4.1 故障转移机制 4.2 主节…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj&#xff0c;再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...

Vite中定义@软链接

在webpack中可以直接通过符号表示src路径&#xff0c;但是vite中默认不可以。 如何实现&#xff1a; vite中提供了resolve.alias&#xff1a;通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...

Bean 作用域有哪些?如何答出技术深度?

导语&#xff1a; Spring 面试绕不开 Bean 的作用域问题&#xff0c;这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开&#xff0c;结合典型面试题及实战场景&#xff0c;帮你厘清重点&#xff0c;打破模板式回答&#xff0c…...