运筹学基础(六)列生成算法(Column generation)
文章目录
- 前言
- 从Cutting stock problem说起
- 常规建模
- Column generation reformulation
- 列生成法
- 核心思想
- 相关概念
- Master Problem (MP)
- Linear Master Problem (LMP)
- Restricted Linear Master Problem (RLMP)
- subproblem(核能预警,非常重要)
- 算法流程图
- CG求解cutting stock problem
- 适用场景:large linear programming
- 参考资料
前言
学习列生成之前,有一些前置基础需要理解,不然就没法继续往下学了。所以为了写这篇文章,我提前铺垫了3篇文章帮助自己把基础捡起来!
- 单纯形法:运筹学基础(一)求解线性规划的单纯形法详解
- 检验数:运筹学基础(四):单纯形法中检验数(reduced cost)的理解
- 对偶问题:运筹学基础(五):对偶问题及其性质
今天终于可以进入正题了!
从Cutting stock problem说起
有一堆固定长度的钢管,不同的顾客想要长度不一样的钢管若干,怎么切割钢管能够使得消耗的钢管数最少?
常规建模
【集合】
- K K K:未切割的钢管集合;
- I I I:所需钢管的种类集合;
【参数】
- D i D_i Di:第 i i i种钢管的需求数量;
- L k L_k Lk:第 k k k根未切钢管的长度;
- L i L_i Li:第 i i i种钢管的长度;
【决策变量】
- x k i x_{ki} xki:第 k k k根钢管切割第 i i i种长度的数量;
- y k y_k yk:第 k k k根钢管是否使用;
【数学模型】
目标函数:最小化使用的钢管数量
约束条件:
- 每根钢管被切割的总长度,不多于该根钢管的总长度;
- 每种钢管被切割的数量不低于该种钢管的总需求量;
m i n ∑ k ∈ K y k s . t . ∑ i ∈ I x k i L i ≤ L k ∗ y k , ∀ k ∈ K ∑ k ∈ K x k i ≥ D i , ∀ i ∈ I x k i ∈ { 0 , 1 } , ∀ k ∈ K , i ∈ I y k ∈ { 0 , 1 } , ∀ k ∈ K min \quad \sum_{k\in K}y_k\\ s.t. \sum_{i\in I}x_{ki}L_i\leq L_k*y_k, \forall k \in K\\ \sum_{k\in K}x_{ki} \geq D_i, \forall i \in I\\ x_{ki} \in \{0, 1\}, \forall k\in K, i\in I\\ y_{k} \in \{0, 1\}, \forall k\in K mink∈K∑yks.t.i∈I∑xkiLi≤Lk∗yk,∀k∈Kk∈K∑xki≥Di,∀i∈Ixki∈{0,1},∀k∈K,i∈Iyk∈{0,1},∀k∈K
问题:该建模方式求解不高效(怎么理解
),因此有人想出了第二种建模思路。
Column generation reformulation
假设所有的切割方式已知,我们用:
- P P P表示所有的切割方案集合;
- C p i C_{pi} Cpi表示在第 p p p种切割方式下,能切割出的第 i i i种钢管的数量;
定义新的决策变量:
- z p z_p zp:表示执行第 p p p种切割模式的钢管的数量。
数学模型表示如下:
m i n ∑ p ∈ P z p s . t . ∑ p ∈ P C p i z p ≥ D i , ∀ i ∈ I z p ≥ 0 , z p i s i n t e g e r , ∀ p ∈ P min \sum_{p\in P}z_p\\ s.t. \sum_{p\in P}C_{pi}z_p \geq D_i, \forall i \in I\\ z_p \geq 0, z_p \quad is \quad integer, \forall p\in P minp∈P∑zps.t.p∈P∑Cpizp≥Di,∀i∈Izp≥0,zpisinteger,∀p∈P
核心问题:切割模式非常多,穷举出来几乎是不可能的,也没有必要(因为不是所有的切割模式都会被用到)!那么如何去寻找最优的切割模式呢?
铛铛铛铛,列生成法正式登场!
列生成法
核心思想
列生成法本质上也是单纯形法的一种形式。常规的单纯形法要求可以把所有变量显式的表达出来,但是诸如cutting stock problem之类的问题,可能无法做到这一点,因此常规的单纯形法就束手无策了。
回想一下单纯形法的迭代过程,基变量的个数等于约束的个数,每次找一个非基变量入基(这个非基变量的增加,要能优化目标函数),直到不能改善目标函数值为止。可以发现,在这个过程中,并不是所有的变量都会用到!
因此有人想到:
- 可以先把原问题( P 0 P_0 P0)限制( r e s t r i c t restrict restrict)到一个规模很小的问题( P 1 P_1 P1)上,然后用单纯形法求解 P 1 P_1 P1。但此时求的最优解是 P 1 P_1 P1的最优解,不是原问题的最优解。
- 因此还需要一个子问题(subproblem)去检查是否存在一个非基变量,其reduced cost小于0(即改变量的增大可以进一步优化目标函数),如果存在,就把这个非基变量相关的系数列加入到 P 1 P_1 P1的系数矩阵中,回到第一步。直到找不到reduced cost小于0的非基变量,即找到了原问题的最优解。
为了获取更优的目标值,往往会选择reduced cost最小的非基变量(切割模式)加入到 P 1 P_1 P1中,那么如何寻找reduced cost最小的非基变量呢?
回答这个问题之前,有一些相关概念先快速弄清楚。
相关概念
Master Problem (MP)
对于一般问题而言,如果要用CG(column generation)求解,一般要转化成set covering model,类似于上面的cutting stock model。不是很理解为什么
转为称为set covering model的问题就称为MP,例如:
Linear Master Problem (LMP)
如果MP里存在整数变量,要先进行线性松弛,MP线性松弛以后的问题就是LMP。
Restricted Linear Master Problem (RLMP)
将LMP限制(restrict)到一个规模更小(即变量数量更少)的问题,就称为RLMP了。
可以看到,下式相比原来的linear master problem,restricted linear master problem相当于把 y k + 1 . . . y n y_{k+1}...y_{n} yk+1...yn强制限制为非基变量了。
subproblem(核能预警,非常重要)
subproblem就是帮助我们找到,当前是否还有非基变量加入 P 1 P_1 P1能够使得目标函数值进一步改善的。理解subproblem的前提是,弄清楚检验数和对偶变量之间的关系。
我们做一下推导:
假设我们找到了原问题的最优解 [ x B , 0 ] [x_B, 0] [xB,0],那么此时原问题的检验数一定都是大于等于0的,即:
C N T − C B T B − 1 N ≥ 0 C_N^T-C_B^TB^{-1}N \geq 0 CNT−CBTB−1N≥0
可以得到:
C N T ≥ C B T B − 1 N C_N^T \geq C_B^TB^{-1}N CNT≥CBTB−1N
我们计算一下:
C B T B − 1 A = C B T B − 1 [ B , N ] = [ C B T , C B T B − 1 N ] ≤ [ C B T , C N T ] = C T C_B^TB^{-1}A=\\ \quad\\ C_B^TB^{-1}[B, N]=\\ \quad\\ [C_B^T, C_B^TB^{-1}N]\leq\\ \quad\\ [C_B^T,C_N^T]=\\ \quad\\ C^T CBTB−1A=CBTB−1[B,N]=[CBT,CBTB−1N]≤[CBT,CNT]=CT
提炼一下上式推导过程中的首尾:
C B T B − 1 A ≤ C T C_B^TB^{-1}A \leq C^T CBTB−1A≤CT
观察一下对偶问题的约束条件:
y T A ≤ C T y^TA\leq C^T yTA≤CT
发现:
C B T B − 1 C_B^TB^{-1} CBTB−1
是对偶问题的一个可行解!
我们继续证明它不仅是一个可行解,而且是最优解:
令:
y T = C B T B − 1 y^T=C_B^TB^{-1} yT=CBTB−1
此时对偶问题的目标函数值为:
y T A = C B T B − 1 b = y^TA=C_B^TB^{-1}b= yTA=CBTB−1b=
这里有个转换是:
x B = B − 1 b x_B=B^{-1}b xB=B−1b
在我的文章运筹学基础(四):单纯形法中检验数(reduced cost)的理解里有相关推导。
因此:
y T A = C B T B − 1 b = C B T x B = C T x y^TA=C_B^TB^{-1}b=C_B^Tx_B=C^Tx yTA=CBTB−1b=CBTxB=CTx
根据对偶问题的最优性性质,可知 y T y^T yT为对偶问题的最优解。
于是检验数的表达式可以写成:
C N T − C B T B − 1 N = y T N C_N^T-C_B^TB^{-1}N = y^TN CNT−CBTB−1N=yTN
所谓的subproblem就是根据该公式,在 y k + 1 . . . y n y_{k+1}...y_{n} yk+1...yn中找到检验数为负,并且最小的非基变量,将变量对应的那一列添加到RLMP中。
算法流程图
CG求解cutting stock problem
题目如下:
第一步:求解RLMP的最优解
第二步:求解subproblem
c i c_i ci表示在新的这种切割模式下,切割第 i i i种钢管的数量。
23+27=20米,正好为钢管的总长度,符合条件。
第三步:加入新的切割模式到原来的模型中,继续求解
第四步:继续求解subproblem,无更好的切割模式,终止
适用场景:large linear programming
约束的数量有限,但是变量的数量非常多的大规模线性规划问题。例如:机组人员调度问题(Crew Assignment Problem)、切割问题(Cutting Stock Problem)、车辆路径问题(Vehicle Routing Problem)、单资源工厂选址问题(The single facility location problem )等。
参考资料
- 带你彻底了解Column Generation(列生成)算法的原理
- 大规模优化求解器-Gurobi-教程
相关文章:

运筹学基础(六)列生成算法(Column generation)
文章目录 前言从Cutting stock problem说起常规建模Column generation reformulation 列生成法核心思想相关概念Master Problem (MP)Linear Master Problem (LMP)Restricted Linear Master Problem (RLMP)subproblem(核能预警,非常重要) 算法…...
[阅读笔记] 电除尘器类细分市场2023年报
0.原始链接: 2023年除尘行业评述及2024年发展展望-北极星大气网 中国环保产业协会 供稿 1.重要信息摘录 市场占有率最大的是电除尘和袋式除尘行业装备产品名录: 国家鼓励发展的重大环保技术装备目录(2023年版)权威评审机构:…...
Kubernetes学习笔记11
k8s集群核心概念:pod: 在K8s集群中是不能直接运行容器的,K8s的最小调度单元是Pod,我们要使用Pod来运行应用程序。 学习目标: 了解pod概念: 了解查看pod方法 了解创建pod方法 了解pod访问方法 了解删除…...

✌2024/4/3—力扣—无重复字符的最长子串
代码实现: 解法一:暴力法 int lengthOfLongestSubstring(char *s) {int hash[256] {0};int num 0;for (int i 0; i < strlen(s); i) {int count 0;for (int j i; j < strlen(s); j) {if (hash[s[j]] 0) {hash[s[j]];count;num num > cou…...
Tauri 进阶使用与实践指南
Tauri 进阶使用与实践指南 调试技术 在 Tauri 应用开发中,调试分为两大部分:Web 端与 Rust 控制台。 Web 端调试 在 Web 端界面,可以直接采用浏览器内置的开发者工具进行调试。在 Windows 上,可以通过快捷键 Ctrl Shift i 打…...
2024年最新社交相亲系统源码下载
最新相亲系统源码功能介绍 参考:相亲系统源码及功能详细介绍 相亲系统主要功能 (已完成) 相亲系统登录注册 相亲系统会员列表 相亲系统会员搜索 相亲系统会员详情 相亲系统会员身份认证 - 对接阿里云 相亲系统资源存储 - 对接七…...

git知识
如何将develop分支合并到master分支 #简单版 git checkout master git pull origin master git merge origin/develop # 解决可能的冲突并提交 git push origin master#复杂版 git checkout master # 拉取远程 master 分支的最新代码并合并到本地 git pull origin master # 拉…...
代码随想录算法训练营第三十五天|860.柠檬水找零、406.根据身高重建队列、452.用最少数量的箭引爆气球
代码随想录算法训练营第三十五天|860.柠檬水找零、406.根据身高重建队列、452.用最少数量的箭引爆气球 860.柠檬水找零 在柠檬水摊上,每一杯柠檬水的售价为 5 美元。顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯…...
golang defer实现
derfer : 延迟调用,函数结束返回时执行,多个defer按照先进后出的顺序调用 原理:底层通过链表实现,每次新增的defer调用,通过头插法插入链表;defer执行时,从链表头开始遍历,相当于实…...

数据仓库实践
什么是数据仓库? 数据仓库是一个用于存储大量数据并支持数据分析与报告的系统。它通常用于集成来自不同来源的数据,提供一个统一的视图,以便进行更深入的分析和决策。 数据仓库的主要优势? 决策支持:为企业决策提供可靠…...

深入浅出 -- 系统架构之微服务标准组件及职责
我们来认识一下微服务架构在Java体系中依托哪些组件实现的。 相对于单体架构的简单粗暴,微服务的核心是将应用打散,形成多个独立提供的微服务,虽然从管理与逻辑上更符合业务需要。但微服务架构也带来了很多急需解决的核心问题: 1…...

IP协议中的四大支柱:DHCP、NAT、ICMP和IGMP的功能剖析
DHCP动态获取 IP 地址 我们的电脑通常都是通过 DHCP 动态获取 IP 地址,大大省去了配 IP 信息繁琐的过程。 客户端首先发起 DHCP 发现报文(DHCP DISCOVER) 的 IP 数据报,由于客户端没有 IP 地址,也不知道 DHCP 服务器的…...

基于Socket简单的UDP网络程序
⭐小白苦学IT的博客主页 ⭐初学者必看:Linux操作系统入门 ⭐代码仓库:Linux代码仓库 ❤关注我一起讨论和学习Linux系统 1.前言 网络编程前言 网络编程是连接数字世界的桥梁,它让计算机之间能够交流信息,为我们的生活和工作带来便利…...
计算机思维
计算机思维是一种运用计算机科学的基础概念和方法来解决问题、设计系统和理解人类行为的思维方式。它包括以下几个方面: 1. 抽象和建模:将复杂的现实问题抽象为计算机可以处理的模型,通过定义对象、属性和关系来构建问题的逻辑结构。 2. 算法…...
如何判断一个linux机器是物理机还是虚拟机
https://blog.csdn.net/qq_32262243/article/details/132571117 第一种方式:dmesg命令 [rootnshqae01adm03 ~]# dmesg | grep -i hypervisor [ 0.000000] Hypervisor detected: Xen PV [ 1.115297] VPMU disabled by hypervisor. 在我的机器上 dmesg也是能够用来判…...
python用requests的post提交data数据以及json和字典的转换
环境:python3.8.10 python使用requests的post提交数据的时候,代码写法跟抓包的headers里面的Content-Type有关系。 (一)记录Content-Type: application/x-www-form-urlencoded的写法。 import requestsurlhttps://xxx.comheade…...
【Datax分库分表导数解决方法】MySQL_to_Hive
Datax-MySQL_to_Hive-分库分表-数据同步工具 简介: 本文档介绍了一个基于Python编写的工具,用于实现分库分表数据同步的功能。该工具利用了DataX作为数据同步的引擎,并通过Python动态生成配置文件,并调用DataX来执行数据同步任务…...

Vue2 —— 学习(一)
目录 一、了解 Vue (一)介绍 (二)Vue 特点 (三)Vue 网站 1.学习: 2.生态系统: 3.团队 二、搭建 Vue 开发环境 (一)安装与引入 Vue 1.直接引入 2.N…...

Windows Server 2008添加Web服务器(IIS)、WebDAV服务、网络负载均衡
一、Windows Server 2008添加Web服务器(IIS) (1)添加角色,搭建web服务器(IIS) (2)添加网站,关闭默认网页,添加默认文档 在客户端浏览器输入服务器…...
SpringMVC转发和重定向
转发和重定向 1. View Resolver Spring MVC 中的视图解析器(View Resolver)负责解析视图。可以通过在配置文件中定义一个 View Resolver 来配置视图解析器: 配置文件版:spring-web.xml <!-- for jsp --> <bean class&q…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...

多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...

宇树科技,改名了!
提到国内具身智能和机器人领域的代表企业,那宇树科技(Unitree)必须名列其榜。 最近,宇树科技的一项新变动消息在业界引发了不少关注和讨论,即: 宇树向其合作伙伴发布了一封公司名称变更函称,因…...

在 Spring Boot 中使用 JSP
jsp? 好多年没用了。重新整一下 还费了点时间,记录一下。 项目结构: pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...