当前位置: 首页 > news >正文

运筹学基础(六)列生成算法(Column generation)

文章目录

  • 前言
  • 从Cutting stock problem说起
    • 常规建模
    • Column generation reformulation
  • 列生成法
    • 核心思想
    • 相关概念
      • Master Problem (MP)
      • Linear Master Problem (LMP)
      • Restricted Linear Master Problem (RLMP)
      • subproblem(核能预警,非常重要)
    • 算法流程图
    • CG求解cutting stock problem
    • 适用场景:large linear programming
  • 参考资料

前言

学习列生成之前,有一些前置基础需要理解,不然就没法继续往下学了。所以为了写这篇文章,我提前铺垫了3篇文章帮助自己把基础捡起来!

  1. 单纯形法:运筹学基础(一)求解线性规划的单纯形法详解
  2. 检验数:运筹学基础(四):单纯形法中检验数(reduced cost)的理解
  3. 对偶问题:运筹学基础(五):对偶问题及其性质

今天终于可以进入正题了!

从Cutting stock problem说起

有一堆固定长度的钢管,不同的顾客想要长度不一样的钢管若干,怎么切割钢管能够使得消耗的钢管数最少?
在这里插入图片描述

常规建模

【集合】

  • K K K:未切割的钢管集合;
  • I I I:所需钢管的种类集合;

【参数】

  • D i D_i Di:第 i i i种钢管的需求数量;
  • L k L_k Lk:第 k k k根未切钢管的长度;
  • L i L_i Li:第 i i i种钢管的长度;

【决策变量】

  • x k i x_{ki} xki:第 k k k根钢管切割第 i i i种长度的数量;
  • y k y_k yk:第 k k k根钢管是否使用;

【数学模型】

目标函数:最小化使用的钢管数量
约束条件:

  1. 每根钢管被切割的总长度,不多于该根钢管的总长度;
  2. 每种钢管被切割的数量不低于该种钢管的总需求量;

m i n ∑ k ∈ K y k s . t . ∑ i ∈ I x k i L i ≤ L k ∗ y k , ∀ k ∈ K ∑ k ∈ K x k i ≥ D i , ∀ i ∈ I x k i ∈ { 0 , 1 } , ∀ k ∈ K , i ∈ I y k ∈ { 0 , 1 } , ∀ k ∈ K min \quad \sum_{k\in K}y_k\\ s.t. \sum_{i\in I}x_{ki}L_i\leq L_k*y_k, \forall k \in K\\ \sum_{k\in K}x_{ki} \geq D_i, \forall i \in I\\ x_{ki} \in \{0, 1\}, \forall k\in K, i\in I\\ y_{k} \in \{0, 1\}, \forall k\in K minkKyks.t.iIxkiLiLkyk,kKkKxkiDi,iIxki{0,1},kK,iIyk{0,1},kK

问题:该建模方式求解不高效(怎么理解),因此有人想出了第二种建模思路。

Column generation reformulation

假设所有的切割方式已知,我们用:

  • P P P表示所有的切割方案集合;
  • C p i C_{pi} Cpi表示在第 p p p种切割方式下,能切割出的第 i i i种钢管的数量;

定义新的决策变量:

  • z p z_p zp:表示执行第 p p p种切割模式的钢管的数量。

数学模型表示如下:
m i n ∑ p ∈ P z p s . t . ∑ p ∈ P C p i z p ≥ D i , ∀ i ∈ I z p ≥ 0 , z p i s i n t e g e r , ∀ p ∈ P min \sum_{p\in P}z_p\\ s.t. \sum_{p\in P}C_{pi}z_p \geq D_i, \forall i \in I\\ z_p \geq 0, z_p \quad is \quad integer, \forall p\in P minpPzps.t.pPCpizpDi,iIzp0,zpisinteger,pP

核心问题:切割模式非常多,穷举出来几乎是不可能的,也没有必要(因为不是所有的切割模式都会被用到)!那么如何去寻找最优的切割模式呢?

铛铛铛铛,列生成法正式登场!

列生成法

核心思想

列生成法本质上也是单纯形法的一种形式。常规的单纯形法要求可以把所有变量显式的表达出来,但是诸如cutting stock problem之类的问题,可能无法做到这一点,因此常规的单纯形法就束手无策了。

回想一下单纯形法的迭代过程,基变量的个数等于约束的个数,每次找一个非基变量入基(这个非基变量的增加,要能优化目标函数),直到不能改善目标函数值为止。可以发现,在这个过程中,并不是所有的变量都会用到!

因此有人想到:

  1. 可以先把原问题( P 0 P_0 P0)限制( r e s t r i c t restrict restrict)到一个规模很小的问题( P 1 P_1 P1)上,然后用单纯形法求解 P 1 P_1 P1。但此时求的最优解是 P 1 P_1 P1的最优解,不是原问题的最优解。
  2. 因此还需要一个子问题(subproblem)去检查是否存在一个非基变量,其reduced cost小于0(即改变量的增大可以进一步优化目标函数),如果存在,就把这个非基变量相关的系数列加入到 P 1 P_1 P1的系数矩阵中,回到第一步。直到找不到reduced cost小于0的非基变量,即找到了原问题的最优解。

为了获取更优的目标值,往往会选择reduced cost最小的非基变量(切割模式)加入到 P 1 P_1 P1中,那么如何寻找reduced cost最小的非基变量呢?

回答这个问题之前,有一些相关概念先快速弄清楚。

相关概念

Master Problem (MP)

对于一般问题而言,如果要用CG(column generation)求解,一般要转化成set covering model,类似于上面的cutting stock model。不是很理解为什么

转为称为set covering model的问题就称为MP,例如:
在这里插入图片描述

Linear Master Problem (LMP)

如果MP里存在整数变量,要先进行线性松弛,MP线性松弛以后的问题就是LMP。
在这里插入图片描述

Restricted Linear Master Problem (RLMP)

将LMP限制(restrict)到一个规模更小(即变量数量更少)的问题,就称为RLMP了。

可以看到,下式相比原来的linear master problem,restricted linear master problem相当于把 y k + 1 . . . y n y_{k+1}...y_{n} yk+1...yn强制限制为非基变量了。
在这里插入图片描述

subproblem(核能预警,非常重要)

subproblem就是帮助我们找到,当前是否还有非基变量加入 P 1 P_1 P1能够使得目标函数值进一步改善的。理解subproblem的前提是,弄清楚检验数和对偶变量之间的关系。

我们做一下推导:
在这里插入图片描述

假设我们找到了原问题的最优解 [ x B , 0 ] [x_B, 0] [xB,0],那么此时原问题的检验数一定都是大于等于0的,即:
C N T − C B T B − 1 N ≥ 0 C_N^T-C_B^TB^{-1}N \geq 0 CNTCBTB1N0
可以得到:
C N T ≥ C B T B − 1 N C_N^T \geq C_B^TB^{-1}N CNTCBTB1N
我们计算一下:
C B T B − 1 A = C B T B − 1 [ B , N ] = [ C B T , C B T B − 1 N ] ≤ [ C B T , C N T ] = C T C_B^TB^{-1}A=\\ \quad\\ C_B^TB^{-1}[B, N]=\\ \quad\\ [C_B^T, C_B^TB^{-1}N]\leq\\ \quad\\ [C_B^T,C_N^T]=\\ \quad\\ C^T CBTB1A=CBTB1[B,N]=[CBT,CBTB1N][CBT,CNT]=CT
提炼一下上式推导过程中的首尾:
C B T B − 1 A ≤ C T C_B^TB^{-1}A \leq C^T CBTB1ACT

观察一下对偶问题的约束条件:
y T A ≤ C T y^TA\leq C^T yTACT

发现:
C B T B − 1 C_B^TB^{-1} CBTB1
是对偶问题的一个可行解!

我们继续证明它不仅是一个可行解,而且是最优解:
令:
y T = C B T B − 1 y^T=C_B^TB^{-1} yT=CBTB1
此时对偶问题的目标函数值为:
y T A = C B T B − 1 b = y^TA=C_B^TB^{-1}b= yTA=CBTB1b=
这里有个转换是:
x B = B − 1 b x_B=B^{-1}b xB=B1b
在我的文章运筹学基础(四):单纯形法中检验数(reduced cost)的理解里有相关推导。

因此:
y T A = C B T B − 1 b = C B T x B = C T x y^TA=C_B^TB^{-1}b=C_B^Tx_B=C^Tx yTA=CBTB1b=CBTxB=CTx
根据对偶问题的最优性性质,可知 y T y^T yT为对偶问题的最优解。

于是检验数的表达式可以写成:
C N T − C B T B − 1 N = y T N C_N^T-C_B^TB^{-1}N = y^TN CNTCBTB1N=yTN

所谓的subproblem就是根据该公式,在 y k + 1 . . . y n y_{k+1}...y_{n} yk+1...yn中找到检验数为负,并且最小的非基变量,将变量对应的那一列添加到RLMP中。

算法流程图

在这里插入图片描述

CG求解cutting stock problem

题目如下:

在这里插入图片描述

第一步:求解RLMP的最优解
在这里插入图片描述
第二步:求解subproblem
c i c_i ci表示在新的这种切割模式下,切割第 i i i种钢管的数量。
23+27=20米,正好为钢管的总长度,符合条件。

在这里插入图片描述
第三步:加入新的切割模式到原来的模型中,继续求解

在这里插入图片描述
第四步:继续求解subproblem,无更好的切割模式,终止
在这里插入图片描述

适用场景:large linear programming

约束的数量有限,但是变量的数量非常多的大规模线性规划问题。例如:机组人员调度问题(Crew Assignment Problem)、切割问题(Cutting Stock Problem)、车辆路径问题(Vehicle Routing Problem)、单资源工厂选址问题(The single facility location problem )等。

参考资料

  1. 带你彻底了解Column Generation(列生成)算法的原理
  2. 大规模优化求解器-Gurobi-教程

相关文章:

运筹学基础(六)列生成算法(Column generation)

文章目录 前言从Cutting stock problem说起常规建模Column generation reformulation 列生成法核心思想相关概念Master Problem (MP)Linear Master Problem (LMP)Restricted Linear Master Problem (RLMP)subproblem(核能预警,非常重要) 算法…...

[阅读笔记] 电除尘器类细分市场2023年报

0.原始链接: 2023年除尘行业评述及2024年发展展望-北极星大气网 中国环保产业协会 供稿 1.重要信息摘录 市场占有率最大的是电除尘和袋式除尘行业装备产品名录: 国家鼓励发展的重大环保技术装备目录(2023年版)权威评审机构:…...

Kubernetes学习笔记11

k8s集群核心概念:pod: 在K8s集群中是不能直接运行容器的,K8s的最小调度单元是Pod,我们要使用Pod来运行应用程序。 学习目标: 了解pod概念: 了解查看pod方法 了解创建pod方法 了解pod访问方法 了解删除…...

✌2024/4/3—力扣—无重复字符的最长子串

代码实现&#xff1a; 解法一&#xff1a;暴力法 int lengthOfLongestSubstring(char *s) {int hash[256] {0};int num 0;for (int i 0; i < strlen(s); i) {int count 0;for (int j i; j < strlen(s); j) {if (hash[s[j]] 0) {hash[s[j]];count;num num > cou…...

Tauri 进阶使用与实践指南

Tauri 进阶使用与实践指南 调试技术 在 Tauri 应用开发中&#xff0c;调试分为两大部分&#xff1a;Web 端与 Rust 控制台。 Web 端调试 在 Web 端界面&#xff0c;可以直接采用浏览器内置的开发者工具进行调试。在 Windows 上&#xff0c;可以通过快捷键 Ctrl Shift i 打…...

2024年最新社交相亲系统源码下载

最新相亲系统源码功能介绍 参考&#xff1a;相亲系统源码及功能详细介绍 相亲系统主要功能 &#xff08;已完成&#xff09; 相亲系统登录注册 相亲系统会员列表 相亲系统会员搜索 相亲系统会员详情 相亲系统会员身份认证 - 对接阿里云 相亲系统资源存储 - 对接七…...

git知识

如何将develop分支合并到master分支 #简单版 git checkout master git pull origin master git merge origin/develop # 解决可能的冲突并提交 git push origin master#复杂版 git checkout master # 拉取远程 master 分支的最新代码并合并到本地 git pull origin master # 拉…...

代码随想录算法训练营第三十五天|860.柠檬水找零、406.根据身高重建队列、452.用最少数量的箭引爆气球

代码随想录算法训练营第三十五天|860.柠檬水找零、406.根据身高重建队列、452.用最少数量的箭引爆气球 860.柠檬水找零 在柠檬水摊上&#xff0c;每一杯柠檬水的售价为 5 美元。顾客排队购买你的产品&#xff0c;&#xff08;按账单 bills 支付的顺序&#xff09;一次购买一杯…...

golang defer实现

derfer : 延迟调用&#xff0c;函数结束返回时执行&#xff0c;多个defer按照先进后出的顺序调用 原理&#xff1a;底层通过链表实现&#xff0c;每次新增的defer调用&#xff0c;通过头插法插入链表&#xff1b;defer执行时&#xff0c;从链表头开始遍历&#xff0c;相当于实…...

数据仓库实践

什么是数据仓库&#xff1f; 数据仓库是一个用于存储大量数据并支持数据分析与报告的系统。它通常用于集成来自不同来源的数据&#xff0c;提供一个统一的视图&#xff0c;以便进行更深入的分析和决策。 数据仓库的主要优势&#xff1f; 决策支持&#xff1a;为企业决策提供可靠…...

深入浅出 -- 系统架构之微服务标准组件及职责

我们来认识一下微服务架构在Java体系中依托哪些组件实现的。 相对于单体架构的简单粗暴&#xff0c;微服务的核心是将应用打散&#xff0c;形成多个独立提供的微服务&#xff0c;虽然从管理与逻辑上更符合业务需要。但微服务架构也带来了很多急需解决的核心问题&#xff1a; 1…...

IP协议中的四大支柱:DHCP、NAT、ICMP和IGMP的功能剖析

DHCP动态获取 IP 地址 我们的电脑通常都是通过 DHCP 动态获取 IP 地址&#xff0c;大大省去了配 IP 信息繁琐的过程。 客户端首先发起 DHCP 发现报文&#xff08;DHCP DISCOVER&#xff09; 的 IP 数据报&#xff0c;由于客户端没有 IP 地址&#xff0c;也不知道 DHCP 服务器的…...

基于Socket简单的UDP网络程序

⭐小白苦学IT的博客主页 ⭐初学者必看&#xff1a;Linux操作系统入门 ⭐代码仓库&#xff1a;Linux代码仓库 ❤关注我一起讨论和学习Linux系统 1.前言 网络编程前言 网络编程是连接数字世界的桥梁&#xff0c;它让计算机之间能够交流信息&#xff0c;为我们的生活和工作带来便利…...

计算机思维

计算机思维是一种运用计算机科学的基础概念和方法来解决问题、设计系统和理解人类行为的思维方式。它包括以下几个方面&#xff1a; 1. 抽象和建模&#xff1a;将复杂的现实问题抽象为计算机可以处理的模型&#xff0c;通过定义对象、属性和关系来构建问题的逻辑结构。 2. 算法…...

如何判断一个linux机器是物理机还是虚拟机

https://blog.csdn.net/qq_32262243/article/details/132571117 第一种方式&#xff1a;dmesg命令 [rootnshqae01adm03 ~]# dmesg | grep -i hypervisor [ 0.000000] Hypervisor detected: Xen PV [ 1.115297] VPMU disabled by hypervisor. 在我的机器上 dmesg也是能够用来判…...

python用requests的post提交data数据以及json和字典的转换

环境&#xff1a;python3.8.10 python使用requests的post提交数据的时候&#xff0c;代码写法跟抓包的headers里面的Content-Type有关系。 &#xff08;一&#xff09;记录Content-Type: application/x-www-form-urlencoded的写法。 import requestsurlhttps://xxx.comheade…...

【Datax分库分表导数解决方法】MySQL_to_Hive

Datax-MySQL_to_Hive-分库分表-数据同步工具 简介&#xff1a; 本文档介绍了一个基于Python编写的工具&#xff0c;用于实现分库分表数据同步的功能。该工具利用了DataX作为数据同步的引擎&#xff0c;并通过Python动态生成配置文件&#xff0c;并调用DataX来执行数据同步任务…...

Vue2 —— 学习(一)

目录 一、了解 Vue &#xff08;一&#xff09;介绍 &#xff08;二&#xff09;Vue 特点 &#xff08;三&#xff09;Vue 网站 1.学习&#xff1a; 2.生态系统&#xff1a; 3.团队 二、搭建 Vue 开发环境 &#xff08;一&#xff09;安装与引入 Vue 1.直接引入 2.N…...

Windows Server 2008添加Web服务器(IIS)、WebDAV服务、网络负载均衡

一、Windows Server 2008添加Web服务器&#xff08;IIS&#xff09; &#xff08;1&#xff09;添加角色&#xff0c;搭建web服务器&#xff08;IIS&#xff09; &#xff08;2&#xff09;添加网站&#xff0c;关闭默认网页&#xff0c;添加默认文档 在客户端浏览器输入服务器…...

SpringMVC转发和重定向

转发和重定向 1. View Resolver Spring MVC 中的视图解析器&#xff08;View Resolver&#xff09;负责解析视图。可以通过在配置文件中定义一个 View Resolver 来配置视图解析器&#xff1a; 配置文件版&#xff1a;spring-web.xml <!-- for jsp --> <bean class&q…...

勒索病毒最新变种.rmallox勒索病毒来袭,如何恢复受感染的数据?

导言&#xff1a; 随着信息技术的飞速发展&#xff0c;网络安全问题日益突出&#xff0c;其中勒索病毒便是近年来备受关注的网络安全威胁之一。在众多勒索病毒中&#xff0c;.rmallox勒索病毒以其独特的传播方式和强大的加密能力&#xff0c;给广大用户带来了极大的困扰。本文…...

复试专业课问题

1、数据结构&#xff1a;详细描述归并排序的过程 归并排序是用分治思想&#xff0c;分治模式在每一层递归上有三个步骤&#xff1a; 分解&#xff08;Divide&#xff09;&#xff1a;将n个元素分成个含n/2个元素的子序列。解决&#xff08;Conquer&#xff09;&#xff1a;用…...

比特币革命:刚刚开始

作者&#xff1a;Marius Farashi Tasooji 编译&#xff1a;秦晋 要充分理解比特币及其含义&#xff0c;首先必须理解什么是价值&#xff0c;什么是货币。以及是什么赋予资产价值&#xff1f; 这个问题看似愚蠢&#xff0c;但实际上非常有趣。我们的生活是由我们消费或出售的物品…...

淘宝店商家电话提取软件操作经验

淘宝爬虫工具是一种用于自动化获取淘宝网站数据的程序。以下是一个简单的淘宝爬虫工具的代码示例&#xff1a; import requests from bs4 import BeautifulSoupdef get_taobao_data(keyword):url fhttps://s.taobao.com/search?q{keyword}headers {User-Agent: Mozilla/5.0…...

【进阶六】Python实现SDVRPTW常见求解算法——遗传算法(GA)

基于python语言&#xff0c;采用经典蚁群算法&#xff08;ACO&#xff09;对 带硬时间窗的需求拆分车辆路径规划问题&#xff08;SDVRPTW&#xff09; 进行求解。 目录 往期优质资源1. 适用场景2. 代码调整2.1 需求拆分2.2 需求拆分后的服务时长取值问题 3. 求解结果4. 代码片段…...

【Android】App通信基础架构相关类源码解析

应用通信基础架构相关类源码解析 这里主要对Android App开发时&#xff0c;常用到的一些通信基础类进行一下源码的简单分析&#xff0c;包括&#xff1a; Handler&#xff1a;处理器&#xff0c;与某个Looper&#xff08;一个线程对应一个Looper&#xff09;进行关联。用于接…...

06-kafka配置

生产者配置 NAMEDESCRIPTIONTYPEDEFAULTVALID VALUESIMPORTANCEbootstrap.servershost/port列表&#xff0c;用于初始化建立和Kafka集群的连接。列表格式为host1:port1,host2:port2,…&#xff0c;无需添加所有的集群地址&#xff0c;kafka会根据提供的地址发现其他的地址&…...

Git、TortoiseGit、SVN、TortoiseSVN 的关系和区别

Git、TortoiseGit、SVN、TortoiseSVN 的关系和区别 &#xff08;一&#xff09;Git&#xff08;分布式版本控制系统&#xff09;:&#xff08;二&#xff09;SVN&#xff08;集中式版本控制系统&#xff09;&#xff08;三&#xff09;TortoiseGit一、下载安装 git二、安装过程…...

4月5日排序算法总结(1)

冒泡排序 利用每趟都确定出一个最大值或者最小值 如果需要排一个从小到大的数组&#xff0c;那么我们每一趟都要确定一个最大值放在最后&#xff0c;一共有n个数&#xff0c;我们最多需要排列n-1趟就可以了&#xff0c;我们可以改进自己的代码&#xff0c;利用一个flag标记&a…...

Pandas追加写入文件的时候写入到了第一行

# 原代码 def find_money(file_path, account, b_account, money, type_word, time):file pd.read_excel(file_path)with open(money.csv, a, newline, encodingutf-8) as f:for i in file.index:省略中间的代码if 省略中间的代码:file.loc[[i]].to_csv(f,indexFalse)find_sam…...