当前位置: 首页 > news >正文

SCI一区 | Matlab实现NGO-TCN-BiGRU-Attention北方苍鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

SCI一区 | Matlab实现NGO-TCN-BiGRU-Attention北方苍鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

目录

    • SCI一区 | Matlab实现NGO-TCN-BiGRU-Attention北方苍鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现NGO-TCN-BiGRU-Attention北方苍鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制;
2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。

模型描述

多变量时间序列预测是一项重要的任务,它涉及对具有多个变量的时间序列数据进行预测。为了改进这一任务的预测性能,研究者们提出了许多不同的模型和算法。其中一种结合了时间卷积网络(Temporal Convolutional Network,TCN)、双向门控循环单元(Bidirectional Gated Recurrent Unit,BiGRU)和注意力机制(Attention)的模型。

该算法的核心思想是利用时间卷积网络来捕捉时间序列数据中的长期依赖关系,通过双向门控循环单元来建模序列数据的上下文信息,并通过注意力机制来自适应地加权不同变量的重要性。

步骤如下:

时间卷积网络(TCN):使用一维卷积层来提取时间序列数据中的局部和全局特征。时间卷积能够通过不同大小的卷积核捕捉不同长度的时间依赖关系,从而更好地建模序列中的长期依赖。

双向门控循环单元(BiGRU):将TCN的输出作为输入,使用双向门控循环单元来编码序列数据的上下文信息。双向GRU能够同时考虑序列数据的过去和未来信息,提高了对序列中重要特征的捕捉能力。

注意力机制(Attention):通过引入注意力机制,模型可以自适应地关注输入序列中不同变量的重要性。注意力机制可以根据序列数据的不同特征,动态地调整它们在预测任务中的权重,从而提高模型的表达能力和预测准确性。

输出层:最后,根据模型的具体任务需求,可以使用不同的输出层结构,如全连接层来进行最终的预测。

通过将时间卷积网络、双向门控循环单元和注意力机制相结合,NGO-TCN-BiGRU-Attention鲸鱼算法能够更好地建模多变量时间序列数据的复杂关系,并提高预测性能。然而,需要注意的是,该算法的具体实现可能会根据具体问题和数据集的特点进行适当的调整和优化。

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现NGO-TCN-BiGRU-Attention北方苍鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

%% %% 算法优化TCN-BiGRU-Attention,实现多变量输入单步预测
clc;
clear 
close allX = xlsread('data.xlsx');
num_samples = length(X);                            % 样本个数 
kim = 6;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测
or_dim = size(X,2);%  重构数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(X(i: i + kim - 1,:), 1, kim*or_dim), X(i + kim + zim - 1,:)];
end% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.9;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%  格式转换
for i = 1 : M vp_train{i, 1} = p_train(:, i);vt_train{i, 1} = t_train(:, i);
endfor i = 1 : N vp_test{i, 1} = p_test(:, i);vt_test{i, 1} = t_test(:, i);
end%% 优化算法优化前,构建优化前的TCN_BiGRU_Attention模型outputSize = 1;  %数据输出y的维度  
numFilters = 64;
filterSize = 5;
dropoutFactor = 0.1;
numBlocks = 2;layer = sequenceInputLayer(f_,Normalization="rescale-symmetric",Name="input");
lgraph = layerGraph(layer);     convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal")layerNormalizationLayerreluLayerdropoutLayer(dropoutFactor) additionLayer(2,Name="add_"+i)];% Add and connect layers.lgraph = addLayers(lgraph,layers);lgraph = connectLayers(lgraph,outputName,"conv1_"+i);% Skip connection.if i == 1% Include convolution in first skip connection.layer = convolution1dLayer(1,numFilters,Name="convSkip");lgraph = addLayers(lgraph,layer);lgraph = connectLayers(lgraph,outputName,"convSkip");lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");elselgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");end% Update layer output name.outputName = "add_" + i;
endtempLayers = flattenLayer("Name","flatten");
lgraph = addLayers(lgraph,tempLayers);tempLayers = gruLayer(NumNeurons,"Name","gru1");
lgraph = addLayers(lgraph,tempLayers);tempLayers = [FlipLayer("flip3")gruLayer(NumNeurons,"Name","gru2")];
lgraph = addLayers(lgraph,tempLayers);tempLayers = [concatenationLayer(1,2,"Name","concat")

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

SCI一区 | Matlab实现NGO-TCN-BiGRU-Attention北方苍鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

SCI一区 | Matlab实现NGO-TCN-BiGRU-Attention北方苍鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测 目录 SCI一区 | Matlab实现NGO-TCN-BiGRU-Attention北方苍鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测预测效果基本介绍模型…...

C++——优先级队列

前言:这篇文章我们继续来分享一个c的容器——优先级队列。 一.理解优先级 何为优先级一说?实际上就是有顺序的意思。 优先级队列,即有顺序的队列,是一个无需我们自己进行排序操作,在数据传入时就会由容器自己排好序的…...

docker部署jumpserver

1、安装Docker以及相关依赖 配置yum源 sudo yum install -y yum-utils sudo yum-config-manager \ --add-repo \ http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo sudo yum install docker-ce docker-ce-cli containerd.io docker-compose-plugin2、添加国…...

ARM FVP平台的terminal窗口大小如何设置

当启动ARM FVP平台时,terminal窗口太小怎么办?看起来非常累眼睛,本博客来解决这个问题。 首先看下ARM FVP平台对Host主机的需求: 通过上图可知,UART默认使用的是xterm。因此,我们需要修改xterm的默认字体设…...

003 静态代理

文章目录 StudentServiceImplStudentService.javaStudentServiceProxy.javaStudentServiceProxy1.javaStudentServiceProxyTest.java StudentServiceImpl package com.aistart.service.impl;import com.aistart.mapper.StudentMapper; import com.aistart.pojo.Student; import…...

基于JAX的二阶优化方法的实践

使用协作分支上的算法 git clone https://github.com/linjing-lab/jax.git cd jax git checkout linjing-lab cd examples在命令行预览方法 牛顿方法: cat newton_method.py拟牛顿法: cat bfgs_method.py在命令行运行程序 python newton_method.pyp…...

【计算机考研】408算法大题怎么练?

先说结论:基础阶段学好各个数据结构与,重点是数组、链表、树、图。然后强化阶段突破算法提 在基础阶段,并不需要过于专门地练习算法。相反,基础阶段的重点应该放在对各种数据结构原理的深入理解上。在我个人的经验中,…...

输入框验证数字类型

校验大于0的数,且小数点后最多为八位小数 let k /^(?!0(\.0)?$)\d(\.\d{1,8})?$/; console.log(k.test(0.00000001)); // true console.log(k.test(0.00000000)); // false console.log(k.test(0.12)); // true console.log(k.test(12.12)); // true输入0-1的数字&#xf…...

LeetCode 377——组合总和 Ⅳ

阅读目录 1. 题目2. 解题思路3. 代码实现 1. 题目 2. 解题思路 此题一看应该就是需要用到动态规划算法&#xff0c;假设我们以 f[d]表示总和为 d 的元素组合的个数&#xff0c;首先&#xff0c;我们遍历 nums 数组&#xff0c; 如果有 nums[i] < target&#xff0c;那么组…...

ubuntu同步网络时间

安装ntpdate sudo apt-get update sudo apt-get install ntpdate设置系统时间与网络时间同步 sudo ntpdate cn.pool.ntp.org设置时区亚洲上海 sudo cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime设置时间为24小时制 echo "LC_TIMEen_DK.UTF-8" >>/…...

Flink学习(四)-数据管道 ETL

一、状态转换 map() 只适用于一对一的转换&#xff0c;即对每个进入算子的流元素&#xff0c;map() 将仅输出一个转换后的元素。 flatmap() 可以输出任意数量的元素&#xff0c;也可以一个都不发。 二、Keyed Streams keyBy() 相当于 sql 中的 group by&#xff0c;通过…...

Python可视化之Matplotlib

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言1、解决坐标轴刻度负号乱码2、解决中文乱码问题3、图形展现形式 一、图形绘制1.折线图plot2.散点图plot&scatter3.柱状图plt.bar&条形图plt.barh4.直方…...

ChatGPT全方位解析:如何培养 AI 智能对话技能?

简介 ChatGPT 的主要优点之一是它能够理解和响应自然语言输入。在日常生活中&#xff0c;沟通本来就是很重要的一门课程&#xff0c;沟通的过程中表达的越清晰&#xff0c;给到的信息越多&#xff0c;那么沟通就越顺畅。 和 ChatGPT 沟通也是同样的道理&#xff0c;如果想要C…...

[C++/Linux] UDP编程

一. UDP函数 UDP&#xff08;用户数据报协议&#xff0c;User Datagram Protocol&#xff09;是一种无连接的网络协议&#xff0c;用于在互联网上交换数据。它允许应用程序发送数据报给另一端的应用程序&#xff0c;但不保证数据报能成功到达&#xff0c;也就是说&#xff0c;它…...

深入探索Linux的lsof命令

在Linux系统中&#xff0c;了解哪些文件被哪些进程打开对于系统管理和问题诊断是极其重要的。这正是lsof命令&#xff0c;即List Open Files&#xff0c;发挥其强大功能的场景。本文旨在详细介绍lsof的起源、底层原理、参数意义&#xff0c;常见用法&#xff0c;并详解其返回结…...

flowable 想改变正在运行的任务,实例版本为最新,需要改哪些表

在Flowable中&#xff0c;要改变正在运行的任务&#xff0c;你需要更新相关的流程定义&#xff0c;具体来说&#xff0c;可能涉及到以下几张表&#xff1a; ACT_RU_TASK&#xff08;运行时任务&#xff09;&#xff1a;这张表包含了当前正在运行的任务信息。你可能需要更新该表…...

统计各位数字都不同的数字个数 II

3032. 统计各位数字都不同的数字个数 II 给你两个 正整数 a 和 b &#xff0c;返回 闭区间 [a, b] 内各位数字都不同的数字个数。 示例 1&#xff1a; 输入&#xff1a;a 1, b 20 输出&#xff1a;19 解释&#xff1a;除 11 以外&#xff0c;区间 [1, 20] 内的所有数字的各…...

Taro框架中的H5 模板基本搭建

1.H5 模板框架的搭建 一个h5 的基本框架的搭建 基础template 阿乐/H5 Taro 的基础模板...

gitea详细介绍

Gitea 是一个轻量级、易于安装的 Git 服务&#xff0c;提供了类似于 GitHub 的功能&#xff0c;如代码托管、问题追踪、团队合作等。它使用 Go 语言开发&#xff0c;可以在自己的服务器上进行部署&#xff0c;从而实现自托管的 Git 服务。Gitea 具有用户友好的界面&#xff0c;…...

应用性能分析系统SkyWalking的安装及使用详解

1. 前言 本文全面介绍了Skywalking的功能特点、安装步骤以及使用方法。首先,文章详细阐述了Skywalking作为一款开源的应用性能管理系统(APM)的核心功能,包括分布式追踪、服务网格观测分析、度量聚合和可视化一体化等。接着,文章提供了Skywalking的详细安装指南,包括环境…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

【Go语言基础【12】】指针:声明、取地址、解引用

文章目录 零、概述&#xff1a;指针 vs. 引用&#xff08;类比其他语言&#xff09;一、指针基础概念二、指针声明与初始化三、指针操作符1. &&#xff1a;取地址&#xff08;拿到内存地址&#xff09;2. *&#xff1a;解引用&#xff08;拿到值&#xff09; 四、空指针&am…...