当前位置: 首页 > news >正文

学习基于pytorch的VGG图像分类 day3

注:本系列博客在于汇总CSDN的精华帖,类似自用笔记,不做学习交流,方便以后的复习回顾,博文中的引用都注明出处,并点赞收藏原博主.

目录

 VGG模型训练

        1.导入必要的库

         2.主函数部分

                 2.1使用cpu或gpu

                 2.2对数据进行预处理

                2.3 训练集部分

                 2.4索引与标签

                2.5创建数据加载器

                 2.6验证集部分

                 2.7模型的初始化

                 2.8训练部分

                2.9评估验证部分 

                 2.10主函数入口

小结


 VGG模型训练

        1.导入必要的库

         导入所需的库,以及导入自定义的VGG模型模版

​
import os  
import sys  
import json  import torch  
import torch.nn as nn  
from torchvision import transforms, datasets  
import torch.optim as optim  
from tqdm import tqdm  from model import vgg  # 导入自定义的VGG模型模块  ​

         2.主函数部分

def main(): 
                 2.1使用cpu或gpu
# 检查是否有可用的CUDA设备,如果有则使用GPU,否则使用CPU  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")  print("using {} device.".format(device))  
                 2.2对数据进行预处理
# 定义数据预处理操作,包括随机裁剪、随机水平翻转、转为Tensor格式、标准化  data_transform = {  "train": transforms.Compose([  transforms.RandomResizedCrop(224),  # 随机裁剪为224x224大小  transforms.RandomHorizontalFlip(),  # 随机水平翻转  transforms.ToTensor(),  # 将PIL Image或ndarray转换为torch.FloatTensor,并归一化到[0.0, 1.0]  transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 标准化处理,减均值除标准差  ]),  "val": transforms.Compose([  transforms.Resize((224, 224)),  # 调整图片大小到224x224  transforms.ToTensor(),  transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])  # 标准化处理  }
                2.3 训练集部分

        读取脚本的路径,构建一个图像数据的跟路径(用条件判断断言路径是否存在,不存在进行报错)加载训练数据集

# 获取当前脚本的绝对路径  current_file_dir = os.path.dirname(os.path.abspath(__file__))  # 构建图像数据的根路径  image_root = os.path.join(current_file_dir, "image_path")  train_dir = os.path.join(image_root, "train")  # 训练集目录  # 确保训练集目录存在  assert os.path.exists(train_dir), "{} path does not exist.".format(train_dir)  # 使用torchvision.datasets的ImageFolder类加载训练数据集,它假设每个子文件夹的名称是其对应的类别  train_dataset = datasets.ImageFolder(root=train_dir, transform=data_transform["train"])  # 定义保存类别标签与索引对应关系的json文件路径  image_path = os.path.join(image_root)  # 计算训练集样本数量  train_num = len(train_dataset)  
                 2.4索引与标签
    # 获取类别标签与索引的对应关系  flower_list = train_dataset.class_to_idx  # 反转字典,将索引映射到类别标签  cla_dict = {val: key for key, val in flower_list.items()} # 将类别索引到标签的映射关系写入json文件  json_str = json.dumps(cla_dict, indent=4)  # 使用json库将字典转化为格式化字符串  with open('class_indices.json', 'w') as json_file:  
                2.5创建数据加载器

        定义每个数据加载器使用的工作进程数量,若自身内存不够,可以小一点!!!

    # 定义每个数据加载器使用的工作进程数量  batch_size = 32nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # 取CPU核心数, batch_size(如果大于1)和8中的最小值  print('Using {} dataloader workers every process'.format(nw))  # 打印每个进程使用的数据加载器工作进程数  # 创建训练集数据加载器  train_loader = torch.utils.data.DataLoader(train_dataset,  batch_size=batch_size, shuffle=True,  num_workers=nw) 
                 2.6验证集部分

        道理同训练集。

    # 验证集目录  val_dir = os.path.join(image_path, "val")  # 验证集文件夹路径  # 检查验证集目录是否存在  assert os.path.exists(val_dir), "{} path does not exist.".format(val_dir)  # 加载验证数据集  validate_dataset = datasets.ImageFolder(root=val_dir, transform=data_transform["val"])  # 获取验证集样本数量  val_num = len(validate_dataset)  # 创建验证集数据加载器  validate_loader = torch.utils.data.DataLoader(validate_dataset,  batch_size=batch_size, shuffle=False,  num_workers=nw)  # 打印训练集和验证集的样本数量  print("using {} images for training, {} images for validation.".format(train_num, val_num))
                 2.7模型的初始化

        对模型各个参数进行初始化,确定分类个数,训练轮数,最佳准确率,学习率

    # 初始化模型  model_name = "vgg16"  net = vgg(model_name=model_name, num_classes = 4, init_weights=True)  # 创建VGG16模型,类别数为4,并初始化权重  net.to(device)  # 将模型转移到指定的设备上(CPU或GPU)  # 定义损失函数和优化器  loss_function = nn.CrossEntropyLoss()  # 交叉熵损失函数,用于分类问题  optimizer = optim.Adam(net.parameters(), lr=0.0001)  # 使用Adam优化器,学习率为0.0001  # 设置训练轮数  epochs = 60# 初始化最佳准确率  best_acc = 0.0  # 设置模型保存路径  save_path = './{}Net.pth'.format(model_name)  # 计算训练步骤数  train_steps = len(train_loader)
                 2.8训练部分

                训练及展示进度

    # 开始训练循环  for epoch in range(epochs):  # 将模型设置为训练模式  net.train()  # 初始化运行损失  running_loss = 0.0  # 使用tqdm库创建进度条,用于显示训练进度  train_bar = tqdm(train_loader, file=sys.stdout)  # 开始每个epoch的训练步骤循环  for step, data in enumerate(train_bar):  # 从数据加载器中获取图像和标签  images, labels = data  # 梯度清零  optimizer.zero_grad()  # 前向传播,计算输出  outputs = net(images.to(device))  # 计算损失  loss = loss_function(outputs, labels.to(device))  # 反向传播,计算梯度  loss.backward()  # 更新模型参数  optimizer.step()  # 更新运行损失(这部分代码在原始代码中被省略了,通常需要用于记录或展示)  # 将当前损失值添加到运行损失中  running_loss += loss.item()  # 打印训练过程中的统计信息  # 格式化字符串,显示当前epoch、总epoch数和当前损失值  train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,  epochs,  loss) 
                2.9评估验证部分 
    # 验证模型性能  net.eval()  # 将模型设置为评估模式  acc = 0.0  # 初始化累积的正确预测数量  with torch.no_grad():  # 不计算梯度,节省计算资源  val_bar = tqdm(validate_loader, file=sys.stdout)  # 创建验证集的进度条  for val_data in val_bar:  # 遍历验证集数据  val_images, val_labels = val_data  # 获取图像和标签  outputs = net(val_images.to(device))  # 前向传播,获取模型输出  predict_y = torch.max(outputs, dim=1)[1]  # 获取预测类别  # 计算预测正确的数量,并累加到acc中  acc += torch.eq(predict_y, val_labels.to(device)).sum().item()  # 计算验证集的准确率  val_accurate = acc / val_num  # 打印当前epoch的训练损失和验证准确率  print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %  (epoch + 1, running_loss / train_steps, val_accurate))  # 如果当前验证准确率高于最佳准确率,则更新最佳准确率并保存模型状态  if val_accurate > best_acc:  best_acc = val_accurate  torch.save(net.state_dict(), save_path)  # 保存模型权重到指定路径  print('Finished Training')  # 训练完成,打印提示信息  
                 2.10主函数入口
# 主函数入口  
if __name__ == '__main__':  main()  # 调用main函数,开始训练过程

小结

        1.对内存不够的情况要降低batch_size的值,否则模型无法训练

        2.在构建路径后,一定要用条件判断断言路径是否存在(这是一个好习惯)

        3.在模型训练时最好实时更新数据(可以更加直观的体现)

相关文章:

学习基于pytorch的VGG图像分类 day3

注:本系列博客在于汇总CSDN的精华帖,类似自用笔记,不做学习交流,方便以后的复习回顾,博文中的引用都注明出处,并点赞收藏原博主. 目录 VGG模型训练 1.导入必要的库 2.主函数部分 2.1使用cpu或gpu 2.2对数据…...

Spring Boot统一功能处理之拦截器

本篇主要介绍Spring Boot的统一功能处理中的拦截器。 目录 一、拦截器的基本使用 二、拦截器实操 三、浅尝源码 初始化DispatcherServerlet 处理请求(doDispatch) 四、适配器模式 一、拦截器的基本使用 在一般的学校或者社区门口,通常会安排几个…...

stm32之基本定时器的使用

在上文我们使用到了HAL库的自带的延时函数,HAL_Delay();我们来看一下函数的原型 __weak void HAL_Delay(uint32_t Delay) {uint32_t tickstart HAL_GetTick();uint32_t wait Delay;/* Add a freq to guarantee minimum wait */…...

单片机为什么还在用C语言编程?

单片机产品的成本是非常敏感的。因此对于单片机开发来说,最重要的是在极其有限的ROM和RAM中实现最多产品的功能。或者反过来说,实现相同的产品功能,所需要的ROM和RAM越小越好,在开始前我有一些资料,是我根据网友给的问…...

IO流的基础详解

文件【1】File类: 封装文件/目录的各种信息,对目录/文件进行操作,但是我们不可以获取到文件/目录中的内容。 【2】引入:IO流: I/O : Input/Output的缩写,用于处理设备之间的数据的传输。 【3】…...

实战攻防 | 记一次项目上的任意文件下载

1、开局 开局一个弱口令,正常来讲我们一般是弱口令或者sql,或者未授权 那么这次运气比较好,直接弱口令进去了 直接访问看看有没有功能点,正常做测试我们一定要先找功能点 发现一个文件上传点,不过老规矩,还…...

熔断之神:探寻Hystrix的秘密与实践指南

引言: 在微服务架构中,服务之间的依赖复杂且难以控制,容灾机制成为确保系统稳定性的重要手段。Hystrix作为Netflix开源的断路器实现,提供了一系列强健的容错功能。 Hystrix的核心概念与作用: Hystrix是一个由Netflix开…...

Web功能测试测试点总结!

web测试就是基于BS架构的软件产品的测试,通俗点来说就是web网站的测试。 一 、界面检查 当我们进入一个页面时,首先应该检查title,页面排版(即页面的展示),而不是马上进入字段校验页面面包屑导航是否正确当前位置是否可见 您的位…...

关于vue3的简单学习

Vue 3 简介 Vue 3 是一个流行的开源Java框架,用于构建用户界面和单页面应用。它带来了许多新特性和改进,包括更好的性能、更小的打包大小、更好的Type支持、全新的组合式 API,以及一些新的内置组件。 一. Vue 3 的新特性 Vue 3引入了许多新…...

windows server 2019 -DNS服务器搭建

前面是有关DNS的相关理论知识,懂了的可以直接跳到第五点。 说明一下:作为服务器ip最好固定下来,以DNS服务器为例子,如果客户机的填写DNS信息的之后,服务器的ip如果变动了的话,客户机都得跟着改&#xff0c…...

使用 XCTest 进行 iOS UI 自动化测试

使用 XCTest 进行 iOS UI 自动化测试是一种有效的方法,可以帮助你验证应用界面的行为和功能。以下是使用 XCTest 进行 iOS UI 自动化测试的基本步骤: 设置项目: 确保你的 Xcode 项目已经包含了 XCTest 测试目标。在测试目标中创建一个新的测试类&#xf…...

【Python】FANUC机器人OPC UA通信并记录数据

目录 引言机器人仿真环境准备代码实现1. 导入库2. 设置参数3. 日志配置4. OPC UA通信5. 备份旧CSV文件6. 主函数 总结 引言 OPC UA(Open Platform Communications Unified Architecture)是一种跨平台的、开放的数据交换标准,常用于工业自动化…...

Linux 中断处理

一、基本概念 1、中断及中断上下文 中断是一种由硬件设备产生的信号,不同设备产生的中断通过中断号来区分。CPU在接收到中断信号后,根据中断号执行对应的中断处理程序(Interrupt Service Routine) 内核对异常和中断的处理类似&a…...

人大金昌netcore适配,调用oracle模式下存储过程\包,返回参数游标

using KdbndpConnection conn new KdbndpConnection("Host192.168.133.221;Port54321;Databasedb1;Poolingtrue;User IDsystem;Password123");conn.Open();//存储过程调用也是类似using var cmd conn.CreateCommand();cmd.CommandText "模式.包名称.存储过程…...

pandas常用的一些操作

EXCLE操作 读取Excel data1 pd.read_excel(excle_dir) 读Excel取跳过前几行: data1 pd.read_excel(excle_dir,skiprows1) 获取总行数 data1.shape[0] 获取总列数 data1.shape[1] 指定某列数据类型 data1 pd.read_excel("C:数据导入.xlsx",dtype…...

【鸿蒙开发】系统组件Row

Row组件 Row沿水平方向布局容器 接口: Row(value?:{space?: number | string }) 参数: 参数名 参数类型 必填 参数描述 space string | number 否 横向布局元素间距。 从API version 9开始,space为负数或者justifyContent设置为…...

Hadoop和zookeeper集群相关执行脚本(未完,持续更新中~)

1、Hadoop集群查看状态 搭建Hadoop数据集群时,按以下路径操作即可生成脚本 [test_1analysis01 bin]$ pwd /home/test_1/hadoop/bin [test_01analysis01 bin]$ vim jpsall #!/bin/bash for host in analysis01 analysis02 analysis03 do echo $host s…...

蓝桥杯算法题:栈(Stack)

这道题考的是递推动态规划,可能不是很难,不过这是自己第一次靠自己想出状态转移方程,所以纪念一下: 要做这些题目,首先要把题目中会出现什么状态给找出来,然后想想他们的状态可以通过什么操作转移&#xf…...

JavaWeb-监听器

文章目录 1.基本介绍2.ServletContextListener1.基本介绍2.创建maven项目,导入依赖3.代码演示1.实现ServletContextListener接口2.配置web.xml3.结果 3.ServletContextAttributeListener监听器1.基本介绍2.代码实例1.ServletContextAttributeListener.java2.配置web…...

系统架构设计基础知识

一. 系统架构概述系统架构的定义 系统架构(System Architecture)是系统的一种整体的高层次的结构表示,是系统的骨架和根基,支撑和链接各个部分,包括构件、连接件、约束规范以及指导这些内容设计与演化的原理&#xff0…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...

如何为服务器生成TLS证书

TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

Java 加密常用的各种算法及其选择

在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

淘宝扭蛋机小程序系统开发:打造互动性强的购物平台

淘宝扭蛋机小程序系统的开发&#xff0c;旨在打造一个互动性强的购物平台&#xff0c;让用户在购物的同时&#xff0c;能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机&#xff0c;实现旋转、抽拉等动作&#xff0c;增…...

ubuntu22.04有线网络无法连接,图标也没了

今天突然无法有线网络无法连接任何设备&#xff0c;并且图标都没了 错误案例 往上一顿搜索&#xff0c;试了很多博客都不行&#xff0c;比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动&#xff0c;重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...