当前位置: 首页 > news >正文

倒立摆建模

前言

系统由一辆具有动力的小车和安装在小车上的倒立摆组成,系统是不稳定,我们需要通过控制移动小车使得倒立摆保持平衡。

具体地,考虑二维情形如下图,控制力为水平力FFF,输出为角度θ\thetaθ以及小车的位置xxx

在这里插入图片描述

力分析和系统方程

设两个物体在水平和竖直方向上的相互作用力分别为NNNPPP
将小车水平方向上的力相加,得到牛顿力学方程:
Mx¨+bx˙+N=FM\ddot{x}+b\dot{x}+N=FMx¨+bx˙+N=F
将倒立摆水平方向上的力相加,得到:
N=mx¨+mlθ¨cosθ−mlθ˙2sinθN=m\ddot{x}+ml\ddot{\theta}cos\theta-ml\dot{\theta}^2sin\thetaN=mx¨+mlθ¨cosθmlθ˙2sinθ
NNN消去,得
Mx¨+bx˙+mx¨+mlθ¨cosθ−mlθ˙2sinθ=FM\ddot{x}+b\dot{x}+m\ddot{x}+ml\ddot{\theta}cos\theta-ml\dot{\theta}^2sin\theta=FMx¨+bx˙+mx¨+mlθ¨cosθmlθ˙2sinθ=F
将垂直于摆的力相加,得
Psinθ+Ncosθ−mgsinθ=mlθ¨+mx¨cosθ(a)Psin\theta+Ncos\theta-mgsin\theta=ml\ddot{\theta}+m\ddot{x}cos\theta(a)Psinθ+Ncosθmgsinθ=mlθ¨+mx¨cosθ(a)
为了消去P,NP,NP,N两项,将两个物体质心的力矩相加,得
Plsinθ−Nlcosθ=Iθ¨(b)Plsin\theta-Nlcos\theta=I\ddot{\theta}(b)PlsinθNlcosθ=Iθ¨(b)
(a)×l+(b)(a)\times l+(b)(a)×l+(b)
(I+ml2)θ¨+mglsinθ=−mlx¨cosθ(I+ml^2)\ddot{\theta}+mglsin\theta=-ml\ddot{x}cos\theta(I+ml2)θ¨+mglsinθ=mlx¨cosθ

线性化

将上述方程线性化,θ=π\theta=\piθ=π,并假设系统保持在这个平衡的小邻域内。设ϕ\phiϕ为摆对平衡位置的偏差,满足θ=π+ϕ\theta=\pi+\phiθ=π+ϕ,若偏差十分小,使用以下近似:
cosθ=cos(π+ϕ)≈−1sinθ=sin(π+ϕ)≈−ϕθ¨2=ϕ˙2≈0cos\theta=cos(\pi+\phi)\approx-1 \\ sin\theta=sin(\pi+\phi)\approx-\phi \\ \ddot{\theta}^2=\dot{\phi}^2\approx0cosθ=cos(π+ϕ)1sinθ=sin(π+ϕ)ϕθ¨2=ϕ˙20

将上述近似公式应用至前面的非线性控制方程,得到两个线性化的方程,并使用uuu替代FFF
(I+ml2)ϕ¨−mglϕ=mlx¨(M+m)x¨+bx˙−mlϕ¨=u(I+ml^2)\ddot{\phi}-mgl\phi=ml\ddot{x} \\ (M+m)\ddot{x}+b\dot{x}-ml\ddot{\phi}=u(I+ml2)ϕ¨mg=mlx¨(M+m)x¨+bx˙mlϕ¨=u

传递函数

假设初始条件为0,对系统方程应用拉普拉斯变换:

todo

相关文章:

倒立摆建模

前言 系统由一辆具有动力的小车和安装在小车上的倒立摆组成,系统是不稳定,我们需要通过控制移动小车使得倒立摆保持平衡。 具体地,考虑二维情形如下图,控制力为水平力FFF,输出为角度θ\thetaθ以及小车的位置xxx。 力…...

SpringSecurity支持WebAuthn认证

WebAuthn是无密码身份验证技术,解决了密码泄露的风险,主流的浏览器都支持。有很多开源的类库实现了WebAuthn规范,Java下流行的类库有:webauthn4jjava-webauthn-serververtx-authSpring Security官方暂时未支持WebAuthn&#xff0c…...

深度学习技巧应用3-神经网络中的超参数搜索

大家好,我是微学AI,今天给大家带来深度学习技巧应用3-神经网络中的超参数搜索。 在深度学习任务中,一个算法模型的性能往往受到很多超参数的影响。超参数是指在模型训练之前需要我们手动设定的参数,例如:学习率、正则…...

【信号量机制及应用】

水善利万物而不争,处众人之所恶,故几于道💦 目录 一、信号量机制 二、信号量的应用 >利用信号量实现进程互斥   >利用信号量实现前驱关系   >利用记录型信号量实现同步 三、例题 四、参考 一、信号量机制 信号量是操作系统提…...

围棋高手郭广昌的“假眼”棋局

(图片来源于网络,侵删)文丨熔财经作者|易不二2022年,在复星深陷债务压顶和变卖资产漩涡的而立之年,“消失”已久的郭广昌,在质疑与非议声中回国稳定军心,强调复星将在未来的五到十年迎来一个全新…...

学成教育-统一异常处理实现

一、统一异常处理实现 统一在base基础工程实现统一异常处理&#xff0c;各模块依赖了base基础工程都 可以使用。 首先在base基础工程添加需要依赖的包&#xff1a; <dependency><groupId>org.springframework</groupId><artifactId>spring-web</…...

JNI内通过参数形式从C/C++中传递string类型数据至Java层

目录 0 前言 1 string类型参数形式传值 2 测试和结果 0 前言 类似之前我写过的两篇文章&#xff1a;一篇介绍了在JNI中基础类型int的传值方式&#xff1b;一篇详细梳理了在JNI层中多维数组的多种传值方式。 JNI内两种方式从C/C中传递一维、二维、三维数组数据至Java层详细…...

自动化测试——执行javaScript脚本

文章目录一、点击元素(对应的click())二、input标签对应的值&#xff08;对应的send_keys()&#xff09;修改时间控件的属性值&#xff1a;三、元素的文本属性四、js脚本滚动操作一、点击元素(对应的click()) 使用场景&#xff1a;当使用显性等待不能解决问题时 代码中实现点击…...

常用十种算法滤波

十种算法滤波1. 限幅滤波法&#xff08;又称程序判断滤波法&#xff09;2. 中位值滤波法3. 算术平均滤波法4. 递推平均滤波法&#xff08;又称滑动平均滤波法&#xff09;5. 中位值平均滤波法&#xff08;又称防脉冲干扰平均滤波法&#xff09;6. 限幅平均滤波法7. 一阶滞后滤波…...

IO多路复用

一、概述 IO多路复用&#xff1a;进程同时检查多个文件描述符&#xff0c;以找出他们中的任何一个是否可执行IO操作。 核心&#xff1a;同时检查多个文件描述符&#xff0c;看他们是否准备好了执行IO操作。文件描述符就绪状态的转化是通过一些IO事件来触发。 二、水平触发和…...

Python中的错误是什么,Python中有哪些错误

7.1 错误(errors) 由于Python代码通常是人类编写的&#xff0c;那么无论代码是在解释之前还是运行之后&#xff0c;或多或少总会出现一些问题。 在Python代码解释时遇到的问题称为错误&#xff0c;通常是语法和缩进问题导致的&#xff0c;这些错误会导致代码无法通过解释器的解…...

记录自己开发一款小程序中所遇到的问题(uniapp+uview)(持续更新)

每次开发小程序中&#xff0c;都会遇到各种各样的问题。但是有的问题已经遇到过了&#xff0c;但是遇到的时候还是要各种的问度娘。 特此出这篇文章&#xff0c;方便自己也是方便大家。 仅供参考 1. u-collapse的样式在h5中正常&#xff0c;但是运行到微信小程序中样式就乱了…...

华为机试 HJ43 迷宫问题

经典迷宫问题dfs 题目链接 描述 定义一个二维数组 N*M &#xff0c;如 5 5 数组下所示&#xff1a; int maze[5][5] { 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, }; 它表示一个迷宫&#xff0c;其中的1表示墙壁&#xff0c;0表示可以走…...

数据结构|链表

概念&#xff1a;链表是一种物理存储结构上非连续、非顺序的存储结构&#xff0c;数据元素的逻辑顺序是通过链表中的指针链接次序实现的 。单链表的形式就像一条铁链环环相扣它与顺序表最大的不同是&#xff0c;单链表的数据存储是在不连续的空间&#xff0c;存储的数据里面含有…...

计算机写论文时,怎么引用文献? - 易智编译EaseEditing

首先需要清楚哪些引用必须注明[1]&#xff1a; 任何直接引用都要用引号并注明来源&#xff1b; 任何不是自己的口头或书面的观点、解释和结论都应注明来源&#xff1b; 即使不用原话&#xff0c;但是他人的思路、概念或观点也应注明&#xff1b; 不要为了适合你的观点修改原…...

实验三:贪心

1.减肥的小k1 题目描述 小K没事干&#xff0c;他要搬砖头&#xff0c;为了达到较好的减肥效果&#xff0c;教练规定的方式很特别&#xff1a; 每一次&#xff0c;小K可以把两堆砖头合并到一起&#xff0c;消耗的体力等于两堆砖头的重量之和。 经过 n-1次合并后&#xff0c; …...

MySQL日志文件

文章目录1.MySQL中的日志文件2.bin log的作用3.redo log的作用4.bin log和redo log的区别&#xff08;1&#xff09;存储的内容&#xff08;2&#xff09;功能&#xff08;3&#xff09;写入时间&#xff08;4&#xff09;写入方式5.两阶段提交6.undo log的作用1.MySQL中的日志…...

Intel8086处理器使用NASM汇编语言实现操作系统08-关于负数的相关处理idiv/cbw/cwde/cdqu/cwd/cdq/cdo/

很多人都知道一个有符号的数&#xff0c;最高位是1&#xff0c;则表示负数&#xff0c;最高位是0&#xff0c;则表示正数&#xff0c;如果假设我的CPU是4位CPU&#xff0c;那么对于1001这个数&#xff0c;是表示9&#xff0c;还是表示-7呢&#xff1f;&#xff1f;&#xff1f;…...

JavaScript 混淆技术

根据JShaman&#xff08;JShaman是专业的JavaScript代码混淆加密网站&#xff09;提供的消息&#xff0c;JavaScript混淆技术大体有以下几种&#xff1a; 变量混淆 将带有JS代码的变量名、方法名、常量名随机变为无意义的类乱码字符串&#xff0c;降低代码可读性&#xff0c;如…...

安装库报错:No CUDA runtime is found, using CUDA_HOME=‘/usr/local/cuda-11.3‘

1、报错内容 安装库时报错&#xff1a; No CUDA runtime is found, using CUDA_HOME/usr/local/cuda-11.32、检查 查看cuda版本和pytorch版本 python 进入python环境 import torch torch.__version__ torch.cuda.is_available()nvidia-smi 因此发现是由于该虚拟环境中CUDA与…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间&#xff0c; 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点&#xff0c;不需要开启数据库闪回。…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统&#xff0c;主要的模块包括管理员&#xff1b;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...