当前位置: 首页 > news >正文

倒立摆建模

前言

系统由一辆具有动力的小车和安装在小车上的倒立摆组成,系统是不稳定,我们需要通过控制移动小车使得倒立摆保持平衡。

具体地,考虑二维情形如下图,控制力为水平力FFF,输出为角度θ\thetaθ以及小车的位置xxx

在这里插入图片描述

力分析和系统方程

设两个物体在水平和竖直方向上的相互作用力分别为NNNPPP
将小车水平方向上的力相加,得到牛顿力学方程:
Mx¨+bx˙+N=FM\ddot{x}+b\dot{x}+N=FMx¨+bx˙+N=F
将倒立摆水平方向上的力相加,得到:
N=mx¨+mlθ¨cosθ−mlθ˙2sinθN=m\ddot{x}+ml\ddot{\theta}cos\theta-ml\dot{\theta}^2sin\thetaN=mx¨+mlθ¨cosθmlθ˙2sinθ
NNN消去,得
Mx¨+bx˙+mx¨+mlθ¨cosθ−mlθ˙2sinθ=FM\ddot{x}+b\dot{x}+m\ddot{x}+ml\ddot{\theta}cos\theta-ml\dot{\theta}^2sin\theta=FMx¨+bx˙+mx¨+mlθ¨cosθmlθ˙2sinθ=F
将垂直于摆的力相加,得
Psinθ+Ncosθ−mgsinθ=mlθ¨+mx¨cosθ(a)Psin\theta+Ncos\theta-mgsin\theta=ml\ddot{\theta}+m\ddot{x}cos\theta(a)Psinθ+Ncosθmgsinθ=mlθ¨+mx¨cosθ(a)
为了消去P,NP,NP,N两项,将两个物体质心的力矩相加,得
Plsinθ−Nlcosθ=Iθ¨(b)Plsin\theta-Nlcos\theta=I\ddot{\theta}(b)PlsinθNlcosθ=Iθ¨(b)
(a)×l+(b)(a)\times l+(b)(a)×l+(b)
(I+ml2)θ¨+mglsinθ=−mlx¨cosθ(I+ml^2)\ddot{\theta}+mglsin\theta=-ml\ddot{x}cos\theta(I+ml2)θ¨+mglsinθ=mlx¨cosθ

线性化

将上述方程线性化,θ=π\theta=\piθ=π,并假设系统保持在这个平衡的小邻域内。设ϕ\phiϕ为摆对平衡位置的偏差,满足θ=π+ϕ\theta=\pi+\phiθ=π+ϕ,若偏差十分小,使用以下近似:
cosθ=cos(π+ϕ)≈−1sinθ=sin(π+ϕ)≈−ϕθ¨2=ϕ˙2≈0cos\theta=cos(\pi+\phi)\approx-1 \\ sin\theta=sin(\pi+\phi)\approx-\phi \\ \ddot{\theta}^2=\dot{\phi}^2\approx0cosθ=cos(π+ϕ)1sinθ=sin(π+ϕ)ϕθ¨2=ϕ˙20

将上述近似公式应用至前面的非线性控制方程,得到两个线性化的方程,并使用uuu替代FFF
(I+ml2)ϕ¨−mglϕ=mlx¨(M+m)x¨+bx˙−mlϕ¨=u(I+ml^2)\ddot{\phi}-mgl\phi=ml\ddot{x} \\ (M+m)\ddot{x}+b\dot{x}-ml\ddot{\phi}=u(I+ml2)ϕ¨mg=mlx¨(M+m)x¨+bx˙mlϕ¨=u

传递函数

假设初始条件为0,对系统方程应用拉普拉斯变换:

todo

相关文章:

倒立摆建模

前言 系统由一辆具有动力的小车和安装在小车上的倒立摆组成,系统是不稳定,我们需要通过控制移动小车使得倒立摆保持平衡。 具体地,考虑二维情形如下图,控制力为水平力FFF,输出为角度θ\thetaθ以及小车的位置xxx。 力…...

SpringSecurity支持WebAuthn认证

WebAuthn是无密码身份验证技术,解决了密码泄露的风险,主流的浏览器都支持。有很多开源的类库实现了WebAuthn规范,Java下流行的类库有:webauthn4jjava-webauthn-serververtx-authSpring Security官方暂时未支持WebAuthn&#xff0c…...

深度学习技巧应用3-神经网络中的超参数搜索

大家好,我是微学AI,今天给大家带来深度学习技巧应用3-神经网络中的超参数搜索。 在深度学习任务中,一个算法模型的性能往往受到很多超参数的影响。超参数是指在模型训练之前需要我们手动设定的参数,例如:学习率、正则…...

【信号量机制及应用】

水善利万物而不争,处众人之所恶,故几于道💦 目录 一、信号量机制 二、信号量的应用 >利用信号量实现进程互斥   >利用信号量实现前驱关系   >利用记录型信号量实现同步 三、例题 四、参考 一、信号量机制 信号量是操作系统提…...

围棋高手郭广昌的“假眼”棋局

(图片来源于网络,侵删)文丨熔财经作者|易不二2022年,在复星深陷债务压顶和变卖资产漩涡的而立之年,“消失”已久的郭广昌,在质疑与非议声中回国稳定军心,强调复星将在未来的五到十年迎来一个全新…...

学成教育-统一异常处理实现

一、统一异常处理实现 统一在base基础工程实现统一异常处理&#xff0c;各模块依赖了base基础工程都 可以使用。 首先在base基础工程添加需要依赖的包&#xff1a; <dependency><groupId>org.springframework</groupId><artifactId>spring-web</…...

JNI内通过参数形式从C/C++中传递string类型数据至Java层

目录 0 前言 1 string类型参数形式传值 2 测试和结果 0 前言 类似之前我写过的两篇文章&#xff1a;一篇介绍了在JNI中基础类型int的传值方式&#xff1b;一篇详细梳理了在JNI层中多维数组的多种传值方式。 JNI内两种方式从C/C中传递一维、二维、三维数组数据至Java层详细…...

自动化测试——执行javaScript脚本

文章目录一、点击元素(对应的click())二、input标签对应的值&#xff08;对应的send_keys()&#xff09;修改时间控件的属性值&#xff1a;三、元素的文本属性四、js脚本滚动操作一、点击元素(对应的click()) 使用场景&#xff1a;当使用显性等待不能解决问题时 代码中实现点击…...

常用十种算法滤波

十种算法滤波1. 限幅滤波法&#xff08;又称程序判断滤波法&#xff09;2. 中位值滤波法3. 算术平均滤波法4. 递推平均滤波法&#xff08;又称滑动平均滤波法&#xff09;5. 中位值平均滤波法&#xff08;又称防脉冲干扰平均滤波法&#xff09;6. 限幅平均滤波法7. 一阶滞后滤波…...

IO多路复用

一、概述 IO多路复用&#xff1a;进程同时检查多个文件描述符&#xff0c;以找出他们中的任何一个是否可执行IO操作。 核心&#xff1a;同时检查多个文件描述符&#xff0c;看他们是否准备好了执行IO操作。文件描述符就绪状态的转化是通过一些IO事件来触发。 二、水平触发和…...

Python中的错误是什么,Python中有哪些错误

7.1 错误(errors) 由于Python代码通常是人类编写的&#xff0c;那么无论代码是在解释之前还是运行之后&#xff0c;或多或少总会出现一些问题。 在Python代码解释时遇到的问题称为错误&#xff0c;通常是语法和缩进问题导致的&#xff0c;这些错误会导致代码无法通过解释器的解…...

记录自己开发一款小程序中所遇到的问题(uniapp+uview)(持续更新)

每次开发小程序中&#xff0c;都会遇到各种各样的问题。但是有的问题已经遇到过了&#xff0c;但是遇到的时候还是要各种的问度娘。 特此出这篇文章&#xff0c;方便自己也是方便大家。 仅供参考 1. u-collapse的样式在h5中正常&#xff0c;但是运行到微信小程序中样式就乱了…...

华为机试 HJ43 迷宫问题

经典迷宫问题dfs 题目链接 描述 定义一个二维数组 N*M &#xff0c;如 5 5 数组下所示&#xff1a; int maze[5][5] { 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, }; 它表示一个迷宫&#xff0c;其中的1表示墙壁&#xff0c;0表示可以走…...

数据结构|链表

概念&#xff1a;链表是一种物理存储结构上非连续、非顺序的存储结构&#xff0c;数据元素的逻辑顺序是通过链表中的指针链接次序实现的 。单链表的形式就像一条铁链环环相扣它与顺序表最大的不同是&#xff0c;单链表的数据存储是在不连续的空间&#xff0c;存储的数据里面含有…...

计算机写论文时,怎么引用文献? - 易智编译EaseEditing

首先需要清楚哪些引用必须注明[1]&#xff1a; 任何直接引用都要用引号并注明来源&#xff1b; 任何不是自己的口头或书面的观点、解释和结论都应注明来源&#xff1b; 即使不用原话&#xff0c;但是他人的思路、概念或观点也应注明&#xff1b; 不要为了适合你的观点修改原…...

实验三:贪心

1.减肥的小k1 题目描述 小K没事干&#xff0c;他要搬砖头&#xff0c;为了达到较好的减肥效果&#xff0c;教练规定的方式很特别&#xff1a; 每一次&#xff0c;小K可以把两堆砖头合并到一起&#xff0c;消耗的体力等于两堆砖头的重量之和。 经过 n-1次合并后&#xff0c; …...

MySQL日志文件

文章目录1.MySQL中的日志文件2.bin log的作用3.redo log的作用4.bin log和redo log的区别&#xff08;1&#xff09;存储的内容&#xff08;2&#xff09;功能&#xff08;3&#xff09;写入时间&#xff08;4&#xff09;写入方式5.两阶段提交6.undo log的作用1.MySQL中的日志…...

Intel8086处理器使用NASM汇编语言实现操作系统08-关于负数的相关处理idiv/cbw/cwde/cdqu/cwd/cdq/cdo/

很多人都知道一个有符号的数&#xff0c;最高位是1&#xff0c;则表示负数&#xff0c;最高位是0&#xff0c;则表示正数&#xff0c;如果假设我的CPU是4位CPU&#xff0c;那么对于1001这个数&#xff0c;是表示9&#xff0c;还是表示-7呢&#xff1f;&#xff1f;&#xff1f;…...

JavaScript 混淆技术

根据JShaman&#xff08;JShaman是专业的JavaScript代码混淆加密网站&#xff09;提供的消息&#xff0c;JavaScript混淆技术大体有以下几种&#xff1a; 变量混淆 将带有JS代码的变量名、方法名、常量名随机变为无意义的类乱码字符串&#xff0c;降低代码可读性&#xff0c;如…...

安装库报错:No CUDA runtime is found, using CUDA_HOME=‘/usr/local/cuda-11.3‘

1、报错内容 安装库时报错&#xff1a; No CUDA runtime is found, using CUDA_HOME/usr/local/cuda-11.32、检查 查看cuda版本和pytorch版本 python 进入python环境 import torch torch.__version__ torch.cuda.is_available()nvidia-smi 因此发现是由于该虚拟环境中CUDA与…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

招商蛇口 | 执笔CID,启幕低密生活新境

作为中国城市生长的力量&#xff0c;招商蛇口以“美好生活承载者”为使命&#xff0c;深耕全球111座城市&#xff0c;以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子&#xff0c;招商蛇口始终与城市发展同频共振&#xff0c;以建筑诠释对土地与生活的…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...

Qemu arm操作系统开发环境

使用qemu虚拟arm硬件比较合适。 步骤如下&#xff1a; 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载&#xff0c;下载地址&#xff1a;https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...

Rust 开发环境搭建

环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行&#xff1a; rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu ​ 2、Hello World fn main() { println…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板&#xff08;STM32F103RBT6&#xff09;通过I2C驱动ICM20948九轴传感器&#xff0c;实现姿态解算&#xff0c;并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化&#xff0c;适合嵌入式及物联网开发者。在基础驱动上新增…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下&#xff0c;大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性&#xff0c;吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型&#xff0c;成为释放其巨大潜力的关键所在&…...