倒立摆建模
前言
系统由一辆具有动力的小车和安装在小车上的倒立摆组成,系统是不稳定,我们需要通过控制移动小车使得倒立摆保持平衡。
具体地,考虑二维情形如下图,控制力为水平力FFF,输出为角度θ\thetaθ以及小车的位置xxx。
力分析和系统方程
设两个物体在水平和竖直方向上的相互作用力分别为NNN和PPP。
将小车水平方向上的力相加,得到牛顿力学方程:
Mx¨+bx˙+N=FM\ddot{x}+b\dot{x}+N=FMx¨+bx˙+N=F
将倒立摆水平方向上的力相加,得到:
N=mx¨+mlθ¨cosθ−mlθ˙2sinθN=m\ddot{x}+ml\ddot{\theta}cos\theta-ml\dot{\theta}^2sin\thetaN=mx¨+mlθ¨cosθ−mlθ˙2sinθ
将NNN消去,得
Mx¨+bx˙+mx¨+mlθ¨cosθ−mlθ˙2sinθ=FM\ddot{x}+b\dot{x}+m\ddot{x}+ml\ddot{\theta}cos\theta-ml\dot{\theta}^2sin\theta=FMx¨+bx˙+mx¨+mlθ¨cosθ−mlθ˙2sinθ=F
将垂直于摆的力相加,得
Psinθ+Ncosθ−mgsinθ=mlθ¨+mx¨cosθ(a)Psin\theta+Ncos\theta-mgsin\theta=ml\ddot{\theta}+m\ddot{x}cos\theta(a)Psinθ+Ncosθ−mgsinθ=mlθ¨+mx¨cosθ(a)
为了消去P,NP,NP,N两项,将两个物体质心的力矩相加,得
Plsinθ−Nlcosθ=Iθ¨(b)Plsin\theta-Nlcos\theta=I\ddot{\theta}(b)Plsinθ−Nlcosθ=Iθ¨(b)
(a)×l+(b)(a)\times l+(b)(a)×l+(b)得
(I+ml2)θ¨+mglsinθ=−mlx¨cosθ(I+ml^2)\ddot{\theta}+mglsin\theta=-ml\ddot{x}cos\theta(I+ml2)θ¨+mglsinθ=−mlx¨cosθ
线性化
将上述方程线性化,θ=π\theta=\piθ=π,并假设系统保持在这个平衡的小邻域内。设ϕ\phiϕ为摆对平衡位置的偏差,满足θ=π+ϕ\theta=\pi+\phiθ=π+ϕ,若偏差十分小,使用以下近似:
cosθ=cos(π+ϕ)≈−1sinθ=sin(π+ϕ)≈−ϕθ¨2=ϕ˙2≈0cos\theta=cos(\pi+\phi)\approx-1 \\ sin\theta=sin(\pi+\phi)\approx-\phi \\ \ddot{\theta}^2=\dot{\phi}^2\approx0cosθ=cos(π+ϕ)≈−1sinθ=sin(π+ϕ)≈−ϕθ¨2=ϕ˙2≈0
将上述近似公式应用至前面的非线性控制方程,得到两个线性化的方程,并使用uuu替代FFF得
(I+ml2)ϕ¨−mglϕ=mlx¨(M+m)x¨+bx˙−mlϕ¨=u(I+ml^2)\ddot{\phi}-mgl\phi=ml\ddot{x} \\ (M+m)\ddot{x}+b\dot{x}-ml\ddot{\phi}=u(I+ml2)ϕ¨−mglϕ=mlx¨(M+m)x¨+bx˙−mlϕ¨=u
传递函数
假设初始条件为0,对系统方程应用拉普拉斯变换:
todo
相关文章:

倒立摆建模
前言 系统由一辆具有动力的小车和安装在小车上的倒立摆组成,系统是不稳定,我们需要通过控制移动小车使得倒立摆保持平衡。 具体地,考虑二维情形如下图,控制力为水平力FFF,输出为角度θ\thetaθ以及小车的位置xxx。 力…...

SpringSecurity支持WebAuthn认证
WebAuthn是无密码身份验证技术,解决了密码泄露的风险,主流的浏览器都支持。有很多开源的类库实现了WebAuthn规范,Java下流行的类库有:webauthn4jjava-webauthn-serververtx-authSpring Security官方暂时未支持WebAuthn,…...

深度学习技巧应用3-神经网络中的超参数搜索
大家好,我是微学AI,今天给大家带来深度学习技巧应用3-神经网络中的超参数搜索。 在深度学习任务中,一个算法模型的性能往往受到很多超参数的影响。超参数是指在模型训练之前需要我们手动设定的参数,例如:学习率、正则…...

【信号量机制及应用】
水善利万物而不争,处众人之所恶,故几于道💦 目录 一、信号量机制 二、信号量的应用 >利用信号量实现进程互斥 >利用信号量实现前驱关系 >利用记录型信号量实现同步 三、例题 四、参考 一、信号量机制 信号量是操作系统提…...

围棋高手郭广昌的“假眼”棋局
(图片来源于网络,侵删)文丨熔财经作者|易不二2022年,在复星深陷债务压顶和变卖资产漩涡的而立之年,“消失”已久的郭广昌,在质疑与非议声中回国稳定军心,强调复星将在未来的五到十年迎来一个全新…...
学成教育-统一异常处理实现
一、统一异常处理实现 统一在base基础工程实现统一异常处理,各模块依赖了base基础工程都 可以使用。 首先在base基础工程添加需要依赖的包: <dependency><groupId>org.springframework</groupId><artifactId>spring-web</…...

JNI内通过参数形式从C/C++中传递string类型数据至Java层
目录 0 前言 1 string类型参数形式传值 2 测试和结果 0 前言 类似之前我写过的两篇文章:一篇介绍了在JNI中基础类型int的传值方式;一篇详细梳理了在JNI层中多维数组的多种传值方式。 JNI内两种方式从C/C中传递一维、二维、三维数组数据至Java层详细…...

自动化测试——执行javaScript脚本
文章目录一、点击元素(对应的click())二、input标签对应的值(对应的send_keys())修改时间控件的属性值:三、元素的文本属性四、js脚本滚动操作一、点击元素(对应的click()) 使用场景:当使用显性等待不能解决问题时 代码中实现点击…...
常用十种算法滤波
十种算法滤波1. 限幅滤波法(又称程序判断滤波法)2. 中位值滤波法3. 算术平均滤波法4. 递推平均滤波法(又称滑动平均滤波法)5. 中位值平均滤波法(又称防脉冲干扰平均滤波法)6. 限幅平均滤波法7. 一阶滞后滤波…...

IO多路复用
一、概述 IO多路复用:进程同时检查多个文件描述符,以找出他们中的任何一个是否可执行IO操作。 核心:同时检查多个文件描述符,看他们是否准备好了执行IO操作。文件描述符就绪状态的转化是通过一些IO事件来触发。 二、水平触发和…...

Python中的错误是什么,Python中有哪些错误
7.1 错误(errors) 由于Python代码通常是人类编写的,那么无论代码是在解释之前还是运行之后,或多或少总会出现一些问题。 在Python代码解释时遇到的问题称为错误,通常是语法和缩进问题导致的,这些错误会导致代码无法通过解释器的解…...

记录自己开发一款小程序中所遇到的问题(uniapp+uview)(持续更新)
每次开发小程序中,都会遇到各种各样的问题。但是有的问题已经遇到过了,但是遇到的时候还是要各种的问度娘。 特此出这篇文章,方便自己也是方便大家。 仅供参考 1. u-collapse的样式在h5中正常,但是运行到微信小程序中样式就乱了…...
华为机试 HJ43 迷宫问题
经典迷宫问题dfs 题目链接 描述 定义一个二维数组 N*M ,如 5 5 数组下所示: int maze[5][5] { 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, }; 它表示一个迷宫,其中的1表示墙壁,0表示可以走…...

数据结构|链表
概念:链表是一种物理存储结构上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的 。单链表的形式就像一条铁链环环相扣它与顺序表最大的不同是,单链表的数据存储是在不连续的空间,存储的数据里面含有…...

计算机写论文时,怎么引用文献? - 易智编译EaseEditing
首先需要清楚哪些引用必须注明[1]: 任何直接引用都要用引号并注明来源; 任何不是自己的口头或书面的观点、解释和结论都应注明来源; 即使不用原话,但是他人的思路、概念或观点也应注明; 不要为了适合你的观点修改原…...
实验三:贪心
1.减肥的小k1 题目描述 小K没事干,他要搬砖头,为了达到较好的减肥效果,教练规定的方式很特别: 每一次,小K可以把两堆砖头合并到一起,消耗的体力等于两堆砖头的重量之和。 经过 n-1次合并后, …...

MySQL日志文件
文章目录1.MySQL中的日志文件2.bin log的作用3.redo log的作用4.bin log和redo log的区别(1)存储的内容(2)功能(3)写入时间(4)写入方式5.两阶段提交6.undo log的作用1.MySQL中的日志…...
Intel8086处理器使用NASM汇编语言实现操作系统08-关于负数的相关处理idiv/cbw/cwde/cdqu/cwd/cdq/cdo/
很多人都知道一个有符号的数,最高位是1,则表示负数,最高位是0,则表示正数,如果假设我的CPU是4位CPU,那么对于1001这个数,是表示9,还是表示-7呢???…...

JavaScript 混淆技术
根据JShaman(JShaman是专业的JavaScript代码混淆加密网站)提供的消息,JavaScript混淆技术大体有以下几种: 变量混淆 将带有JS代码的变量名、方法名、常量名随机变为无意义的类乱码字符串,降低代码可读性,如…...
安装库报错:No CUDA runtime is found, using CUDA_HOME=‘/usr/local/cuda-11.3‘
1、报错内容 安装库时报错: No CUDA runtime is found, using CUDA_HOME/usr/local/cuda-11.32、检查 查看cuda版本和pytorch版本 python 进入python环境 import torch torch.__version__ torch.cuda.is_available()nvidia-smi 因此发现是由于该虚拟环境中CUDA与…...

地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...

多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合
作者:来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布,Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明,Elastic 作为 …...

Visual Studio Code 扩展
Visual Studio Code 扩展 change-case 大小写转换EmmyLua for VSCode 调试插件Bookmarks 书签 change-case 大小写转换 https://marketplace.visualstudio.com/items?itemNamewmaurer.change-case 选中单词后,命令 changeCase.commands 可预览转换效果 EmmyLua…...