倒立摆建模
前言
系统由一辆具有动力的小车和安装在小车上的倒立摆组成,系统是不稳定,我们需要通过控制移动小车使得倒立摆保持平衡。
具体地,考虑二维情形如下图,控制力为水平力FFF,输出为角度θ\thetaθ以及小车的位置xxx。
力分析和系统方程
设两个物体在水平和竖直方向上的相互作用力分别为NNN和PPP。
将小车水平方向上的力相加,得到牛顿力学方程:
Mx¨+bx˙+N=FM\ddot{x}+b\dot{x}+N=FMx¨+bx˙+N=F
将倒立摆水平方向上的力相加,得到:
N=mx¨+mlθ¨cosθ−mlθ˙2sinθN=m\ddot{x}+ml\ddot{\theta}cos\theta-ml\dot{\theta}^2sin\thetaN=mx¨+mlθ¨cosθ−mlθ˙2sinθ
将NNN消去,得
Mx¨+bx˙+mx¨+mlθ¨cosθ−mlθ˙2sinθ=FM\ddot{x}+b\dot{x}+m\ddot{x}+ml\ddot{\theta}cos\theta-ml\dot{\theta}^2sin\theta=FMx¨+bx˙+mx¨+mlθ¨cosθ−mlθ˙2sinθ=F
将垂直于摆的力相加,得
Psinθ+Ncosθ−mgsinθ=mlθ¨+mx¨cosθ(a)Psin\theta+Ncos\theta-mgsin\theta=ml\ddot{\theta}+m\ddot{x}cos\theta(a)Psinθ+Ncosθ−mgsinθ=mlθ¨+mx¨cosθ(a)
为了消去P,NP,NP,N两项,将两个物体质心的力矩相加,得
Plsinθ−Nlcosθ=Iθ¨(b)Plsin\theta-Nlcos\theta=I\ddot{\theta}(b)Plsinθ−Nlcosθ=Iθ¨(b)
(a)×l+(b)(a)\times l+(b)(a)×l+(b)得
(I+ml2)θ¨+mglsinθ=−mlx¨cosθ(I+ml^2)\ddot{\theta}+mglsin\theta=-ml\ddot{x}cos\theta(I+ml2)θ¨+mglsinθ=−mlx¨cosθ
线性化
将上述方程线性化,θ=π\theta=\piθ=π,并假设系统保持在这个平衡的小邻域内。设ϕ\phiϕ为摆对平衡位置的偏差,满足θ=π+ϕ\theta=\pi+\phiθ=π+ϕ,若偏差十分小,使用以下近似:
cosθ=cos(π+ϕ)≈−1sinθ=sin(π+ϕ)≈−ϕθ¨2=ϕ˙2≈0cos\theta=cos(\pi+\phi)\approx-1 \\ sin\theta=sin(\pi+\phi)\approx-\phi \\ \ddot{\theta}^2=\dot{\phi}^2\approx0cosθ=cos(π+ϕ)≈−1sinθ=sin(π+ϕ)≈−ϕθ¨2=ϕ˙2≈0
将上述近似公式应用至前面的非线性控制方程,得到两个线性化的方程,并使用uuu替代FFF得
(I+ml2)ϕ¨−mglϕ=mlx¨(M+m)x¨+bx˙−mlϕ¨=u(I+ml^2)\ddot{\phi}-mgl\phi=ml\ddot{x} \\ (M+m)\ddot{x}+b\dot{x}-ml\ddot{\phi}=u(I+ml2)ϕ¨−mglϕ=mlx¨(M+m)x¨+bx˙−mlϕ¨=u
传递函数
假设初始条件为0,对系统方程应用拉普拉斯变换:
todo
相关文章:

倒立摆建模
前言 系统由一辆具有动力的小车和安装在小车上的倒立摆组成,系统是不稳定,我们需要通过控制移动小车使得倒立摆保持平衡。 具体地,考虑二维情形如下图,控制力为水平力FFF,输出为角度θ\thetaθ以及小车的位置xxx。 力…...

SpringSecurity支持WebAuthn认证
WebAuthn是无密码身份验证技术,解决了密码泄露的风险,主流的浏览器都支持。有很多开源的类库实现了WebAuthn规范,Java下流行的类库有:webauthn4jjava-webauthn-serververtx-authSpring Security官方暂时未支持WebAuthn,…...

深度学习技巧应用3-神经网络中的超参数搜索
大家好,我是微学AI,今天给大家带来深度学习技巧应用3-神经网络中的超参数搜索。 在深度学习任务中,一个算法模型的性能往往受到很多超参数的影响。超参数是指在模型训练之前需要我们手动设定的参数,例如:学习率、正则…...

【信号量机制及应用】
水善利万物而不争,处众人之所恶,故几于道💦 目录 一、信号量机制 二、信号量的应用 >利用信号量实现进程互斥 >利用信号量实现前驱关系 >利用记录型信号量实现同步 三、例题 四、参考 一、信号量机制 信号量是操作系统提…...

围棋高手郭广昌的“假眼”棋局
(图片来源于网络,侵删)文丨熔财经作者|易不二2022年,在复星深陷债务压顶和变卖资产漩涡的而立之年,“消失”已久的郭广昌,在质疑与非议声中回国稳定军心,强调复星将在未来的五到十年迎来一个全新…...
学成教育-统一异常处理实现
一、统一异常处理实现 统一在base基础工程实现统一异常处理,各模块依赖了base基础工程都 可以使用。 首先在base基础工程添加需要依赖的包: <dependency><groupId>org.springframework</groupId><artifactId>spring-web</…...

JNI内通过参数形式从C/C++中传递string类型数据至Java层
目录 0 前言 1 string类型参数形式传值 2 测试和结果 0 前言 类似之前我写过的两篇文章:一篇介绍了在JNI中基础类型int的传值方式;一篇详细梳理了在JNI层中多维数组的多种传值方式。 JNI内两种方式从C/C中传递一维、二维、三维数组数据至Java层详细…...

自动化测试——执行javaScript脚本
文章目录一、点击元素(对应的click())二、input标签对应的值(对应的send_keys())修改时间控件的属性值:三、元素的文本属性四、js脚本滚动操作一、点击元素(对应的click()) 使用场景:当使用显性等待不能解决问题时 代码中实现点击…...
常用十种算法滤波
十种算法滤波1. 限幅滤波法(又称程序判断滤波法)2. 中位值滤波法3. 算术平均滤波法4. 递推平均滤波法(又称滑动平均滤波法)5. 中位值平均滤波法(又称防脉冲干扰平均滤波法)6. 限幅平均滤波法7. 一阶滞后滤波…...

IO多路复用
一、概述 IO多路复用:进程同时检查多个文件描述符,以找出他们中的任何一个是否可执行IO操作。 核心:同时检查多个文件描述符,看他们是否准备好了执行IO操作。文件描述符就绪状态的转化是通过一些IO事件来触发。 二、水平触发和…...

Python中的错误是什么,Python中有哪些错误
7.1 错误(errors) 由于Python代码通常是人类编写的,那么无论代码是在解释之前还是运行之后,或多或少总会出现一些问题。 在Python代码解释时遇到的问题称为错误,通常是语法和缩进问题导致的,这些错误会导致代码无法通过解释器的解…...

记录自己开发一款小程序中所遇到的问题(uniapp+uview)(持续更新)
每次开发小程序中,都会遇到各种各样的问题。但是有的问题已经遇到过了,但是遇到的时候还是要各种的问度娘。 特此出这篇文章,方便自己也是方便大家。 仅供参考 1. u-collapse的样式在h5中正常,但是运行到微信小程序中样式就乱了…...
华为机试 HJ43 迷宫问题
经典迷宫问题dfs 题目链接 描述 定义一个二维数组 N*M ,如 5 5 数组下所示: int maze[5][5] { 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, }; 它表示一个迷宫,其中的1表示墙壁,0表示可以走…...

数据结构|链表
概念:链表是一种物理存储结构上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的 。单链表的形式就像一条铁链环环相扣它与顺序表最大的不同是,单链表的数据存储是在不连续的空间,存储的数据里面含有…...

计算机写论文时,怎么引用文献? - 易智编译EaseEditing
首先需要清楚哪些引用必须注明[1]: 任何直接引用都要用引号并注明来源; 任何不是自己的口头或书面的观点、解释和结论都应注明来源; 即使不用原话,但是他人的思路、概念或观点也应注明; 不要为了适合你的观点修改原…...
实验三:贪心
1.减肥的小k1 题目描述 小K没事干,他要搬砖头,为了达到较好的减肥效果,教练规定的方式很特别: 每一次,小K可以把两堆砖头合并到一起,消耗的体力等于两堆砖头的重量之和。 经过 n-1次合并后, …...

MySQL日志文件
文章目录1.MySQL中的日志文件2.bin log的作用3.redo log的作用4.bin log和redo log的区别(1)存储的内容(2)功能(3)写入时间(4)写入方式5.两阶段提交6.undo log的作用1.MySQL中的日志…...
Intel8086处理器使用NASM汇编语言实现操作系统08-关于负数的相关处理idiv/cbw/cwde/cdqu/cwd/cdq/cdo/
很多人都知道一个有符号的数,最高位是1,则表示负数,最高位是0,则表示正数,如果假设我的CPU是4位CPU,那么对于1001这个数,是表示9,还是表示-7呢???…...

JavaScript 混淆技术
根据JShaman(JShaman是专业的JavaScript代码混淆加密网站)提供的消息,JavaScript混淆技术大体有以下几种: 变量混淆 将带有JS代码的变量名、方法名、常量名随机变为无意义的类乱码字符串,降低代码可读性,如…...
安装库报错:No CUDA runtime is found, using CUDA_HOME=‘/usr/local/cuda-11.3‘
1、报错内容 安装库时报错: No CUDA runtime is found, using CUDA_HOME/usr/local/cuda-11.32、检查 查看cuda版本和pytorch版本 python 进入python环境 import torch torch.__version__ torch.cuda.is_available()nvidia-smi 因此发现是由于该虚拟环境中CUDA与…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...

大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...

html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...

华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...

三分算法与DeepSeek辅助证明是单峰函数
前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...
4. TypeScript 类型推断与类型组合
一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式,自动确定它们的类型。 这一特性减少了显式类型注解的需要,在保持类型安全的同时简化了代码。通过分析上下文和初始值,TypeSc…...