python统计分析——一般线性回归模型
参考资料:python统计分析【托马斯】
当我想用一个或多个其他的变量预测一个变量的时候,我们可以用线性回归的方法。
例如,当我们寻找给定数据集的最佳拟合线的时候,我们是在寻找让下式的残差平方和最小的参数(k,d):
其中,k是线的斜率,d是截距。残差是观测值和预测值之间的差异。
由于线性回归方程是用最小化残差平方和的方法来解决的,线性回归又是也成为普通最小二乘法(OLS)回归。
这里注意:与相关性相反,x和y之间的这种关系不再是对称的;它假设x值是精确的,所有的变异性都在于残差。
1、决定系数
我们约定:是数据集中的观测值,
为模型计算得到的于
相对应的预测值,
为所有
的平均值。那么:
是模型平方和,或回归平方和,或可解释平方和。
是残差平方和,或误差平方和。
是总平方和,它等于样本方差乘以n-1。
决定系数一般表示为:
由于
所以:
用文字表达:决定系数就是模型的可解释平方和与总平方和的比值。
对于简单线性回归(即直线拟合),决定系数就是相关系数r的平方。如果我们的自变量和因变量之间存在非线性关系,那么简单的相关性和决定系数会对结果造成误导。
2、带置信区间的直线
对于单变量分布,基于标准差的置信区间表示我们期望包含95%的数据的区间(用于数据);而基于平均数标准误的置信区间表示95%概率下包含真正均值的区间(用于参数)。如下:
3、曲线拟合
为了了解如何使用不同的模型来评估给定的数据集,让我们来看一个简单的例子:拟合一个有噪声的、略微二次项弯曲的曲线。让我们从numpy中实现的算法开始,然后用线性、二次方、三次方曲线来拟合数据。
代码如下:
# 导入库
import numpy as np
import matplotlib.pyplot as plt# 生成一个有噪声、略微二次项弯曲的数据集
x=np.arange(100)
y=150+3*x+0.3+x**2+5*np.random.randn(len(x))# 线性拟合、二次方拟合、三次方拟合
# 创建设计矩阵
M1=np.vstack((np.ones_like(x),x)).T
M2=np.vstack((np.ones_like(x),x,x**2)).T
M3=np.vstack((np.ones_like(x),x,x**2,x**3)).T# 解方程
p1=np.linalg.lstsq(M1,y)
p2=np.linalg.lstsq(M2,y)
p3=np.linalg.lstsq(M3,y)np.set_printoptions(precision=3)
print('the coefficients from the linear fit:{0}'.format(p1[0]))
print('the coefficients from the quadratic fit:{0}'.format(p2[0]))
print('the coefficients from the cubic fit:{0}'.format(p3[0]))
# 计算x对应的预测值
p1_y=-1466.335+101.978*x
p2_y=150.394+2.994*x+x**2
p3_y=150+3.04*x+0.9987*x**2+7.842*(10**(-6))*x**3# 作图
plt.rcParams['font.sans-serif']="SimHei" # 设置中文显示
plt.rcParams['axes.unicode_minus']=False # 设置负号显示
plt.scatter(x,y,c="black",s=0.1,label="数据")
plt.plot(x,p1_y,"b:",label="线性拟合")
plt.plot(x,p2_y,"r--",label="二次方拟合")
plt.plot(x,p3_y,'g-.',label="三次方拟合")
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
显示图片如下
如果我们想找到哪个才是拟合的“最好的”,我们可以使用statsmodels提供的工作来再次拟合模型。使用statsmodels,我们不仅可以得到最佳拟合参数,还能得到关于模型的许多价值的额外信息。python代码如下:
import statsmodels.api as sm
import statsmodels.formula.api as smfRes1=sm.OLS(y,M1).fit()
Res2=sm.OLS(y,M2).fit()
Res3=sm.OLS(y,M3).fit()# 以Res1为例输出结果
print(Res1.summary2())
print('the AIC-value is {0:4.1f} for the linear fit ,\n{1:4.1f} for the quadratic fit ,and \n {2:4.1f} for the cubic fit'.format(Res1.aic,Res2.aic,Res3.aic))
在这里,我们需要知道AIC值(Akaike信息准则)可用于评估模型的质量:AIC值越低,模型越好。我们看到,二次模型的AIC值最小,因此是最好的模型:它提供了与三次方模型相同的拟合质量,但使用较少的参数来得到该质量。
下面我们再用公式语言执行相同的拟合,但不需要手动生成设计矩阵,以及如何提取模型参数、标准误和置信区间。值得注意的是,使用pandas数据框允许Python添加单独参数的信息。
import pandas as pd
import statsmodels.formula.api as smf# 将数据转化为pandas的dataframe格式
df=pd.DataFrame({"x":x,"y":y})# 拟合模型,并展示结果
Res1F=smf.ols("y~x",df).fit()
Res2F=smf.ols("y~x+I(x**2)",df).fit()
Res3F=smf.ols("y~x+I(x**2)+I(x**3)",df).fit()# 作为示例,显示二次方拟合的参数
print(Res2F.params)
print(Res2F.bse)
print(Res2F.conf_int())
相关文章:

python统计分析——一般线性回归模型
参考资料:python统计分析【托马斯】 当我想用一个或多个其他的变量预测一个变量的时候,我们可以用线性回归的方法。 例如,当我们寻找给定数据集的最佳拟合线的时候,我们是在寻找让下式的残差平方和最小的参数(k,d): 其…...

【cocos creator】【TS】贝塞尔曲线,地图之间显示曲线
参考: https://blog.csdn.net/Ctrls_/article/details/108731313 https://blog.csdn.net/qq_28299311/article/details/104009804 const { ccclass, property } cc._decorator;ccclass export default class creatPoint extends cc.Component {property(cc.Node)bu…...
COMFYUI换脸ReActor报错Value not in list: face_restore_model: ‘codeformer.pth‘解决
Value not in list: face_restore_model: codeformer.pth not in [none, GFPGANv1.3.pth] 搜了下没找到答案,最后看github官方的指引: You can download models here: https://huggingface.co/datasets/Gourieff/ReActor/tree/main/models/facerestore…...
深入理解Java中的字段与属性的区别
1、Java中的属性和字段有什么区别? 答:Java中的属性(property),通常可以理解为get和set方法。 而字段(field),通常叫做“类成员”,或 "类成员变量”,有时也叫“域”,理解为“数据成员”&…...

【Locust分布式压力测试】
Locust分布式压力测试 https://docs.locust.io/en/stable/running-distributed.html Distributed load generation A single process running Locust can simulate a reasonably high throughput. For a simple test plan and small payloads it can make more than a thousan…...
富格林:出金异常警惕黑幕陷阱受骗
富格林悉知,在做单出金时落入黑幕陷阱亏损后,需尽快发现和总结错误,用心筹维权谋安全出金盈利方法并追回亏损。因为黄金市场优势众多,众多的投资者进入市场投资,但因为经验不足,在面对黑幕陷阱是获取无法及…...
Docker - Nginx
博文目录 文章目录 说明命令 说明 Docker Hub Nginx 数据卷数据卷印射在容器内的路径nginx.conf/etc/nginxnginx.html/usr/share/nginx/htmlnginx.log/var/log/nginx 容器内的路径说明/etc/nginx/nginx.conf配置文件/etc/nginx/conf.d配置目录/usr/share/nginx/html静态目录/…...

免费搭建幻兽帕鲁服务器(Palworld免费开服教程)
随着互联网技术的不断发展和普及,网络游戏已经成为了人们休闲娱乐的重要方式之一。而在众多网络游戏中,幻兽帕鲁以其独特的游戏设定和玩法,吸引了大量玩家的关注。为了满足广大玩家的需求,本文将介绍如何免费搭建幻兽帕鲁服务器&a…...

作业习题
实验代码: import java.util.Scanner;class chazhao {public static void main(String[] args) {Scanner scnew Scanner(System.in);System.out.println("请输入你要的数组");String line sc.nextLine();String[] lineArrline.split(" ");int[…...

解决unbuntu更新到23.10 mantic firefox无法使用的问题
产看历史版本号: 升级到最新版本后查看: roottesthost01:/home/test/Desktop# lsb_release -a No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 23.10 Release: 23.10 Codename: mantic 打开firefox发现图标找…...
idea常用配置——注释快捷键
1、单行注释:使用 Ctrl / 可以添加或删除当前行的注释。如果你想要给某一行添加注释,只需要将光标放在那一行,然后按下 Ctrl / 即可。如果你想要删除那一行的注释,同样只需要将光标放在那一行,然后再次按下 Ctrl /。…...

Hidl 学习总结 2
1、Android apk 调用Hidl处理 app添加对应的hidl jar包 2、MainActivity 添加如下代码 package com.example.test2;import androidx.appcompat.app.AppCompatActivity; import vendor.hardware.test.V1_0.ITest; import vendor.hardware.test.V1_0.ITestCmdCallback; import …...

深度学习学习日记4.7
1.梯度下降 w 新 w旧 - 学习率梯度 训练的目的就是让 loss 减小 2.前向传播进行预测, 反向传播进行训练(每一个参数通过梯度下降进行更新参数),(1前向传播 2求 loss 3反向传播 4梯度更新) 能够让损失下降的参数,就是更好的参数。 损失…...

五一假期来临,各地景区云旅游、慢直播方案设计与平台搭建
一、行业背景 经文化和旅游部数据中心测算,今年清明节假期3天全国国内旅游出游1.19亿人次,按可比口径较2019年同期增长11.5%;国内游客出游花费539.5亿元,较2019年同期增长12.7%。踏青赏花和户外徒步成为假期的热门出游主题。随着…...

自动驾驶中的交通标志识别原理及应用
自动驾驶中的交通标志识别原理及应用 附赠自动驾驶学习资料和量产经验:链接 概述 道路交通标志和标线时引导道路使用者有秩序使用道路,以促进道路行车安全,而在驾驶辅助系统中对交通标志的识别则可以不间断的为整车控制提供相应的帮助。比如…...

数据挖掘入门项目二手交易车价格预测之建模调参
文章目录 目标步骤1. 调整数据类型,减少数据在内存中占用的空间2. 使用线性回归来简单建模3. 五折交叉验证4. 模拟真实业务情况5. 绘制学习率曲线与验证曲线6. 嵌入式特征选择6. 非线性模型7. 模型调参(1) 贪心调参(2)…...

【Java】Java使用Swing实现一个模拟计算器(有源码)
📝个人主页:哈__ 期待您的关注 今天翻了翻之前写的代码,发现自己之前还写了一个计算器,今天把我之前写的代码分享出来。 我记得那会儿刚学不会写,写的乱七八糟,但拿来当期末作业还是不错的哈哈。 直接上…...
MC9S12DJ64微控制器
这份文件是关于Freescale的MC9S12DJ64微控制器的用户指南,包含了关于该设备的详细信息和使用说明。以下是核心内容的整理: 产品信息: 产品信息详细描述如下: 1. **产品名称**:- MC9S12DJ64微控制器单元(MCU)2. **核心…...

小程序打开空白的问题处理
小程序打开是空白的,如下: 这个问题都是请求域名的问题: 一、检查服务器域名配置了 https没有,如果没有,解决办法是申请个ssl证书,具体看这里 https://doc.crmeb.com/mer/mer2/4257 二、完成第一步后&#…...

langchain + azure chatgpt组合配置并运行
首先默认你已经有了azure的账号。 最重要的是选择gpt-35-turbo-instruct模型、api_version:2023-05-15,就这两个参数谷歌我尝试了很久才成功。 我们打开https://portal.azure.com/#home,点击更多服务: 我们点击Azure OpenAI&#…...

C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...

自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...

多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...