当前位置: 首页 > news >正文

波士顿房价预测案例(python scikit-learn)---多元线性回归(多角度实验分析)

波士顿房价预测案例(python scikit-learn)—多元线性回归(多角度实验分析)

这次实验,我们主要从以下几个方面介绍:

一、相关框架介绍

二、数据集介绍

三、实验结果-优化算法对比实验,数据标准化对比实验,正则化对比试验,多项式回归degree对比实验,岭回归alpha敏感度实验

一、相关框架介绍

Scikit-learn(全称:Simple and Efficient Tools for Machine Learning,意为“简单高效的机器学习工具”)是一个开源的Python机器学习库,它提供了简单而高效的工具,用于数据挖掘和数据分析。

Scikit-learn主要特点包括:丰富的算法库、易于使用、高效的性能、数据预处理和特征选择、模型评估和选择、可扩展性、社区支持。

二、数据集介绍

2.1数据集来源

波士顿房价数据集是一个著名的数据集,它在机器学习和统计分析领域中被广泛用于回归问题的实践和研究。这个数据集包含了美国马萨诸塞州波士顿郊区的房价信息,这些信息是由美国人口普查局收集的。
在这里插入图片描述
该数据集共包括507行数据,十三列特征,外加一列标签。

2.2数据集特征

数据集的特征:
CRIM: 城镇人均犯罪率 ZN: 占地面积超过25,000平方英尺的住宅用地比例
INDUS: 每个城镇非零售业务的比例 CHAS: 查尔斯河虚拟变量(如果是河道,则为1;否则为0)
NOX: 一氧化氮浓度(每千万份) RM: 每间住宅的平均房间数
AGE: 1940年以前建造的自住单位比例 DIS: 波士顿的五个就业中心加权距离
RAD: 径向高速公路的可达性指数 TAX: 每10,000美元的全额物业税率
PTRATIO: 城镇的学生与教师比例 B: 1000(Bk - 0.63)^ 2,其中Bk是城镇黑人的比例
LSTAT: 人口状况下降% MEDV: 自有住房的中位数报价, 单位1000美元

三、实验结果-优化算法对比实验,数据标准化对比实验,正则化对比试验,多项式回归degree对比实验,岭回归alpha敏感度实验

3.1 优化算法对比实验


# 从 sklearn.datasets 导入波士顿房价数据读取器。
from sklearn.datasets import load_boston
# 从读取房价数据存储在变量 boston 中。
boston = load_boston()
# 输出数据描述。
from matplotlib import pyplot as plt
from matplotlib import font_manager
from matplotlib import pyplot as plt
import numpy as np
import matplotlib
# 参数设置import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"]=False #该语句解决图像中的“-”负号的乱码问题# 从sklearn.cross_validation 导入数据分割器。
from sklearn.model_selection import train_test_split
# 导入 numpy 并重命名为 np。
import numpy as np
from sklearn.linear_model import Ridge,Lasso
X = boston.data
y = boston.target
# 随机采样 25% 的数据构建测试样本,其余作为训练样本。X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25)
# 分析回归目标值的差异。print("The max target value is", np.max(boston.target))
print("The min target value is", np.min(boston.target)) 
print("The average target value is", np.mean(boston.target))# 从 sklearn.preprocessing 导入数据标准化模块。
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import Normalizer
# 分别初始化对特征和目标值的标准化器。
ss_X = StandardScaler()
ss_y = StandardScaler()
ss="StandardScaler"
# 分别对训练和测试数据的特征以及目标值进行标准化处理。
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)y_train = ss_y.fit_transform(y_train.reshape(-1, 1))y_test = ss_y.transform(y_test.reshape(-1, 1))# 从 sklearn.linear_model 导入 LinearRegression。
from sklearn.linear_model import LinearRegression
# 使用默认配置初始化线性回归器 LinearRegression。def train_model():lr = LinearRegression()# 使用训练数据进行参数估计。lr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lr_y_predict = lr.predict(X_test)# 从 sklearn.linear_model 导入 SGDRegressor。from sklearn.linear_model import SGDRegressor# 使用默认配置初始化线性回归器 SGDRegressor。sgdr = SGDRegressor()# 使用训练数据进行参数估计。sgdr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。sgdr_y_predict = sgdr.predict(X_test)ridge = Ridge(alpha=10)# 使用训练数据进行参数估计。ridge.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。ridge_y_predict = ridge.predict(X_test)# Lassolasso = Lasso(alpha=0.01)# 使用训练数据进行参数估计。lasso.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lasso_y_predict = lasso.predict(X_test)return lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predictdef evaluate(X_test,y_test,lr_y_predict,model):
# 使用 LinearRegression 模型自带的评估模块,并输出评估结果。nmse=model.score(X_test, y_test)print('The value of default measurement of LinearRegression is',nmse )# 从 sklearn.metrics 依次导入 r2_score、mean_squared_error 以及 mean_absoluate_error 用于回归性能的评估。from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error# 使用 r2_score 模块,并输出评估结果。r2=r2_score(y_test, lr_y_predict)print('The value of R-squared of LinearRegression is',r2 )# 使用 mean_squared_error 模块,并输出评估结果。#print(y_test)lr_y_predict=lr_y_predict.reshape(len(lr_y_predict),-1)#print(lr_y_predict)#print(mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)))mse=mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean squared error of LinearRegression is',mse)# 使用 mean_absolute_error 模块,并输出评估结果。mae= mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean absoluate error of LinearRegression is', mae)return round(nmse,2),round(r2,2),round(mse,2),round(mae,2)def plot(model1,model2):
# 数据classes = [ 'r2', 'mse', 'mae']# r2s = [87, 85, 89, 81, 78]# mess = [85, 98, 84, 79, 82]# nmse = [83, 85, 82, 87, 78]# 将横坐标班级先替换为数值x = np.arange(len(classes))width = 0.2r2s_x = xmess_x = x + widthnmse_x = x + 2 * widthmae_x = x + 3 * width# 绘图plt.bar(r2s_x, model1, width=width, color='gold', label='LinearRegression')plt.bar(mess_x,model2,width=width,color="silver",label="SGDRegressor")#plt.bar(nmse_x,model3,width=width, color="saddlebrown",label="ridge-alpha=10")#plt.bar(mae_x,model4,width=width, color="red",label="lasso-alpha=0.01")plt.title("lr,sdgr+"+ss+"性能对比图")#将横坐标数值转换为班级plt.xticks(x + width, classes)#显示柱状图的高度文本for i in range(len(classes)):plt.text(r2s_x[i],model1[i], model1[i],va="bottom",ha="center",fontsize=8)plt.text(mess_x[i],model2[i], model2[i],va="bottom",ha="center",fontsize=8)#plt.text(nmse_x[i],model3[i], model3[i],va="bottom",ha="center",fontsize=8)#plt.text(mae_x[i],model4[i], model4[i],va="bottom",ha="center",fontsize=8)#显示图例plt.legend(loc="upper right")plt.show()#coding=gbk;def plot_line(X,y,model,name):#--------------------------------------------------------------#z是我们生成的等差数列,用来画出线性模型的图形。z=np.linspace(0,50,200).reshape(-1,1)plt.scatter(y,ss_y.inverse_transform(model.predict(ss_X.transform(X)).reshape(len(X),-1)),c="orange",edgecolors='k')plt.plot(z,z,c="k")plt.xlabel('y')plt.ylabel("y_hat")plt.title(name)plt.show()lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict=train_model()models=[lr,sgdr]
r2s=[]
mess=[]
maes=[]
nmse=[]
results=[]
plot_line(X,y,lr,'LinearRegression+'+ss)
plot_line(X,y,sgdr,'SGDRegressor+'+ss)
#plot_line(X,y,lasso,'lasso'+ss)
#plot_line(X,y,ridge,'ridge'+ss)
print("sgdr_y_predict")
print(sgdr_y_predict)predicts=[lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict]
i=0
for model in models:result=evaluate(X_test,y_test,predicts[i],model)i=i+1results.append(result)# r2s.append(result[1])# mess.append(result[2])# maes.append(result[3])# nmse.append(result[0])#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
print(results)#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
plot(results[0][1:4],results[1][1:4])

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.2 数据标准化对比实验

# 从 sklearn.datasets 导入波士顿房价数据读取器。
from sklearn.datasets import load_boston
# 从读取房价数据存储在变量 boston 中。
boston = load_boston()
# 输出数据描述。
from matplotlib import pyplot as plt
from matplotlib import font_manager
from matplotlib import pyplot as plt
import numpy as np
import matplotlib
# 参数设置import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"]=False #该语句解决图像中的“-”负号的乱码问题# 从sklearn.cross_validation 导入数据分割器。
from sklearn.model_selection import train_test_split
# 导入 numpy 并重命名为 np。
import numpy as np
from sklearn.linear_model import Ridge,Lasso
X = boston.data
y = boston.target
# 随机采样 25% 的数据构建测试样本,其余作为训练样本。X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25)
# 分析回归目标值的差异。print("The max target value is", np.max(boston.target))
print("The min target value is", np.min(boston.target)) 
print("The average target value is", np.mean(boston.target))# 从 sklearn.preprocessing 导入数据标准化模块。
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import Normalizer
# 分别初始化对特征和目标值的标准化器。
ss_X = StandardScaler()
ss_y = StandardScaler()
ss="StandardScaler"
# 分别对训练和测试数据的特征以及目标值进行标准化处理。
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)y_train = ss_y.fit_transform(y_train.reshape(-1, 1))y_test = ss_y.transform(y_test.reshape(-1, 1))# 从 sklearn.linear_model 导入 LinearRegression。
from sklearn.linear_model import LinearRegression
# 使用默认配置初始化线性回归器 LinearRegression。def train_model():lr = LinearRegression()# 使用训练数据进行参数估计。lr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lr_y_predict = lr.predict(X_test)# 从 sklearn.linear_model 导入 SGDRegressor。from sklearn.linear_model import SGDRegressor# 使用默认配置初始化线性回归器 SGDRegressor。sgdr = SGDRegressor()# 使用训练数据进行参数估计。sgdr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。sgdr_y_predict = sgdr.predict(X_test)ridge = Ridge(alpha=10)# 使用训练数据进行参数估计。ridge.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。ridge_y_predict = ridge.predict(X_test)# Lassolasso = Lasso(alpha=0.01)# 使用训练数据进行参数估计。lasso.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lasso_y_predict = lasso.predict(X_test)return lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predictdef evaluate(X_test,y_test,lr_y_predict,model):
# 使用 LinearRegression 模型自带的评估模块,并输出评估结果。nmse=model.score(X_test, y_test)print('The value of default measurement of LinearRegression is',nmse )# 从 sklearn.metrics 依次导入 r2_score、mean_squared_error 以及 mean_absoluate_error 用于回归性能的评估。from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error# 使用 r2_score 模块,并输出评估结果。r2=r2_score(y_test, lr_y_predict)print('The value of R-squared of LinearRegression is',r2 )# 使用 mean_squared_error 模块,并输出评估结果。#print(y_test)lr_y_predict=lr_y_predict.reshape(len(lr_y_predict),-1)#print(lr_y_predict)#print(mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)))mse=mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean squared error of LinearRegression is',mse)# 使用 mean_absolute_error 模块,并输出评估结果。mae= mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean absoluate error of LinearRegression is', mae)return round(nmse,2),round(r2,2),round(mse,2),round(mae,2)def plot(model1,model2):
# 数据classes = [ 'r2', 'mse', 'mae']# r2s = [87, 85, 89, 81, 78]# mess = [85, 98, 84, 79, 82]# nmse = [83, 85, 82, 87, 78]# 将横坐标班级先替换为数值x = np.arange(len(classes))width = 0.2r2s_x = xmess_x = x + widthnmse_x = x + 2 * widthmae_x = x + 3 * width# 绘图plt.bar(r2s_x, model1, width=width, color='gold', label='LinearRegression')plt.bar(mess_x,model2,width=width,color="silver",label="SGDRegressor")#plt.bar(nmse_x,model3,width=width, color="saddlebrown",label="ridge-alpha=10")#plt.bar(mae_x,model4,width=width, color="red",label="lasso-alpha=0.01")plt.title("lr,sdgr+"+ss+"性能对比图")#将横坐标数值转换为班级plt.xticks(x + width, classes)#显示柱状图的高度文本for i in range(len(classes)):plt.text(r2s_x[i],model1[i], model1[i],va="bottom",ha="center",fontsize=8)plt.text(mess_x[i],model2[i], model2[i],va="bottom",ha="center",fontsize=8)#plt.text(nmse_x[i],model3[i], model3[i],va="bottom",ha="center",fontsize=8)#plt.text(mae_x[i],model4[i], model4[i],va="bottom",ha="center",fontsize=8)#显示图例plt.legend(loc="upper right")plt.show()#coding=gbk;def plot_line(X,y,model,name):#--------------------------------------------------------------#z是我们生成的等差数列,用来画出线性模型的图形。z=np.linspace(0,50,200).reshape(-1,1)plt.scatter(y,ss_y.inverse_transform(model.predict(ss_X.transform(X)).reshape(len(X),-1)),c="orange",edgecolors='k')plt.plot(z,z,c="k")plt.xlabel('y')plt.ylabel("y_hat")plt.title(name)plt.show()lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict=train_model()models=[lr,sgdr]
r2s=[]
mess=[]
maes=[]
nmse=[]
results=[]
plot_line(X,y,lr,'LinearRegression+'+ss)
plot_line(X,y,sgdr,'SGDRegressor+'+ss)
#plot_line(X,y,lasso,'lasso'+ss)
#plot_line(X,y,ridge,'ridge'+ss)
print("sgdr_y_predict")
print(sgdr_y_predict)predicts=[lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict]
i=0
for model in models:result=evaluate(X_test,y_test,predicts[i],model)i=i+1results.append(result)# r2s.append(result[1])# mess.append(result[2])# maes.append(result[3])# nmse.append(result[0])#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
print(results)#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
plot(results[0][1:4],results[1][1:4])

# 从 sklearn.datasets 导入波士顿房价数据读取器。
from sklearn.datasets import load_boston
# 从读取房价数据存储在变量 boston 中。
boston = load_boston()
# 输出数据描述。
from matplotlib import pyplot as plt
from matplotlib import font_manager
from matplotlib import pyplot as plt
import numpy as np
import matplotlib
# 参数设置import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"]=False #该语句解决图像中的“-”负号的乱码问题# 从sklearn.cross_validation 导入数据分割器。
from sklearn.model_selection import train_test_split
# 导入 numpy 并重命名为 np。
import numpy as np
from sklearn.linear_model import Ridge, RidgeCV
X = boston.data
print(X.min(axis=0))
print(X.max(axis=0))y = boston.target
# 随机采样 25% 的数据构建测试样本,其余作为训练样本。
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25)
# 分析回归目标值的差异。print("The max target value is", np.max(boston.target))
print("The min target value is", np.min(boston.target)) 
print("The average target value is", np.mean(boston.target))# 从 sklearn.preprocessing 导入数据标准化模块。
from sklearn.preprocessing import StandardScaler
# 分别初始化对特征和目标值的标准化器。
ss_X = StandardScaler()
ss_y = StandardScaler()
# 分别对训练和测试数据的特征以及目标值进行标准化处理。
# X_train = ss_X.fit_transform(X_train
# X_test = ss_X.transform(X_test)
y_train = y_train.reshape(-1, 1)
y_test = y_test.reshape(-1, 1)# 从 sklearn.linear_model 导入 LinearRegression。
from sklearn.linear_model import LinearRegression
# 使用默认配置初始化线性回归器 LinearRegression。def train_model():lr = LinearRegression()# 使用训练数据进行参数估计。lr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lr_y_predict = lr.predict(X_test)# 从 sklearn.linear_model 导入 SGDRegressor。from sklearn.linear_model import SGDRegressor# 使用默认配置初始化线性回归器 SGDRegressor。sgdr = SGDRegressor()# 使用训练数据进行参数估计。sgdr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。sgdr_y_predict = sgdr.predict(X_test)ridge = Ridge(alpha=10)# 使用训练数据进行参数估计。ridge.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。ridge_y_predict = ridge.predict(X_test)return lr,sgdr,ridge,lr_y_predict,sgdr_y_predict,ridge_y_predictdef evaluate(X_test,y_test,lr_y_predict,model):
# 使用 LinearRegression 模型自带的评估模块,并输出评估结果。nmse=model.score(X_test, y_test)print('The value of default measurement of LinearRegression is',nmse )# 从 sklearn.metrics 依次导入 r2_score、mean_squared_error 以及 mean_absoluate_error 用于回归性能的评估。from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error# 使用 r2_score 模块,并输出评估结果。r2=r2_score(y_test, lr_y_predict)print('The value of R-squared of LinearRegression is',r2 )# 使用 mean_squared_error 模块,并输出评估结果。#print(y_test)lr_y_predict=lr_y_predict.reshape(len(lr_y_predict),-1)#print(lr_y_predict)#print(mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)))mse=mean_squared_error(y_test, lr_y_predict)print('The mean squared error of LinearRegression is',mse)# 使用 mean_absolute_error 模块,并输出评估结果。mae= mean_absolute_error(y_test, lr_y_predict)print('The mean absoluate error of LinearRegression is', mae)return round(nmse,2),round(r2,2),round(mse,2),round(mae,2)def plot(model1,model2):
# 数据classes = [ 'r2', 'mse', 'mae']# r2s = [87, 85, 89, 81, 78]# mess = [85, 98, 84, 79, 82]# nmse = [83, 85, 82, 87, 78]# 将横坐标班级先替换为数值x = np.arange(len(classes))width = 0.2r2s_x = xmess_x = x + widthnmse_x = x + 2 * widthmae_x = x + 3 * width# 绘图plt.bar(r2s_x, model1, width=width, color='gold', label='LinearRegression')plt.bar(mess_x,model2,width=width,color="silver",label="SGDRegressor")# plt.bar(nmse_x,nmse,width=width, color="saddlebrown",label="mse")# plt.bar(mae_x,maes,width=width, color="red",label="mae")#将横坐标数值转换为班级plt.xticks(x + width, classes)#显示柱状图的高度文本for i in range(len(classes)):plt.text(r2s_x[i],model1[i], model1[i],va="bottom",ha="center",fontsize=8)plt.text(mess_x[i],model2[i], model2[i],va="bottom",ha="center",fontsize=8)# plt.text(nmse_x[i],nmse[i], nmse[i],va="bottom",ha="center",fontsize=8)# plt.text(mae_x[i],maes[i], maes[i],va="bottom",ha="center",fontsize=8)#显示图例plt.legend(loc="upper right")plt.show()def plot_line(X,y,model,name):#--------------------------------------------------------------#z是我们生成的等差数列,用来画出线性模型的图形。z=np.linspace(0,50,200).reshape(-1,1)plt.scatter(y,model.predict(X),c="orange",edgecolors='k')print(model.predict(X))plt.plot(z,z,c="k")plt.xlabel('y')plt.ylabel("y_hat")plt.title(name)plt.show()
lr,sgdr,ridge,lr_y_predict,sgdr_y_predict,ridge_y_predict=train_model()models=[lr,sgdr,]
r2s=[]
mess=[]
maes=[]
nmse=[]
results=[]plot_line(X,y,lr,'LinearRegression')
plot_line(X,y,sgdr,'SGDRegressor')
print("sgdr_y_predict")
print(sgdr_y_predict)predicts=[lr_y_predict,sgdr_y_predict]
i=0
for model in models:result=evaluate(X_test,y_test,predicts[i],model)i=i+1results.append(result)# r2s.append(result[1])# mess.append(result[2])# maes.append(result[3])# nmse.append(result[0])#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
print(results)
plot(results[0][1:4],results[1][1:4])

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.3 正则化对比试验


# 从 sklearn.datasets 导入波士顿房价数据读取器。
from sklearn.datasets import load_boston
# 从读取房价数据存储在变量 boston 中。
boston = load_boston()
# 输出数据描述。
from matplotlib import pyplot as plt
from matplotlib import font_manager
from matplotlib import pyplot as plt
import numpy as np
import matplotlib
# 参数设置import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"]=False #该语句解决图像中的“-”负号的乱码问题# 从sklearn.cross_validation 导入数据分割器。
from sklearn.model_selection import train_test_split
# 导入 numpy 并重命名为 np。
import numpy as np
from sklearn.linear_model import Ridge,Lasso
X = boston.data
y = boston.target
# 随机采样 25% 的数据构建测试样本,其余作为训练样本。X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25)
# 分析回归目标值的差异。print("The max target value is", np.max(boston.target))
print("The min target value is", np.min(boston.target)) 
print("The average target value is", np.mean(boston.target))# 从 sklearn.preprocessing 导入数据标准化模块。
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import Normalizer
# 分别初始化对特征和目标值的标准化器。
ss_X = StandardScaler()
ss_y = StandardScaler()
ss="StandardScaler"
# 分别对训练和测试数据的特征以及目标值进行标准化处理。
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)y_train = ss_y.fit_transform(y_train.reshape(-1, 1))y_test = ss_y.transform(y_test.reshape(-1, 1))# 从 sklearn.linear_model 导入 LinearRegression。
from sklearn.linear_model import LinearRegression
# 使用默认配置初始化线性回归器 LinearRegression。def train_model():lr = LinearRegression()# 使用训练数据进行参数估计。lr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lr_y_predict = lr.predict(X_test)# 从 sklearn.linear_model 导入 SGDRegressor。from sklearn.linear_model import SGDRegressor# 使用默认配置初始化线性回归器 SGDRegressor。sgdr = SGDRegressor()# 使用训练数据进行参数估计。sgdr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。sgdr_y_predict = sgdr.predict(X_test)ridge = Ridge(alpha=10)# 使用训练数据进行参数估计。ridge.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。ridge_y_predict = ridge.predict(X_test)# Lassolasso = Lasso(alpha=0.01)# 使用训练数据进行参数估计。lasso.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lasso_y_predict = lasso.predict(X_test)return lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predictdef evaluate(X_test,y_test,lr_y_predict,model):
# 使用 LinearRegression 模型自带的评估模块,并输出评估结果。nmse=model.score(X_test, y_test)print('The value of default measurement of LinearRegression is',nmse )# 从 sklearn.metrics 依次导入 r2_score、mean_squared_error 以及 mean_absoluate_error 用于回归性能的评估。from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error# 使用 r2_score 模块,并输出评估结果。r2=r2_score(y_test, lr_y_predict)print('The value of R-squared of LinearRegression is',r2 )# 使用 mean_squared_error 模块,并输出评估结果。#print(y_test)lr_y_predict=lr_y_predict.reshape(len(lr_y_predict),-1)#print(lr_y_predict)#print(mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)))mse=mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean squared error of LinearRegression is',mse)# 使用 mean_absolute_error 模块,并输出评估结果。mae= mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean absoluate error of LinearRegression is', mae)return round(nmse,2),round(r2,2),round(mse,2),round(mae,2)def plot(model1,model2,model3,model4):
# 数据classes = [ 'r2', 'mse', 'mae']# r2s = [87, 85, 89, 81, 78]# mess = [85, 98, 84, 79, 82]# nmse = [83, 85, 82, 87, 78]# 将横坐标班级先替换为数值x = np.arange(len(classes))width = 0.2r2s_x = xmess_x = x + widthnmse_x = x + 2 * widthmae_x = x + 3 * width# 绘图plt.bar(r2s_x, model1, width=width, color='gold', label='LinearRegression')plt.bar(mess_x,model2,width=width,color="silver",label="SGDRegressor")plt.bar(nmse_x,model3,width=width, color="saddlebrown",label="ridge-alpha=10")plt.bar(mae_x,model4,width=width, color="red",label="lasso-alpha=0.01")plt.title("lr,sdgr,lasso,ridge+"+ss+"性能对比图")#将横坐标数值转换为班级plt.xticks(x + width, classes)#显示柱状图的高度文本for i in range(len(classes)):plt.text(r2s_x[i],model1[i], model1[i],va="bottom",ha="center",fontsize=8)plt.text(mess_x[i],model2[i], model2[i],va="bottom",ha="center",fontsize=8)plt.text(nmse_x[i],model3[i], model3[i],va="bottom",ha="center",fontsize=8)plt.text(mae_x[i],model4[i], model4[i],va="bottom",ha="center",fontsize=8)#显示图例plt.legend(loc="upper right")plt.show()#coding=gbk;def plot_line(X,y,model,name):z=np.linspace(0,50,200).reshape(-1,1)plt.scatter(y,ss_y.inverse_transform(model.predict(ss_X.transform(X)).reshape(len(X),-1)),c="orange",edgecolors='k')plt.plot(z,z,c="k")plt.xlabel('y')plt.ylabel("y_hat")plt.title(name)plt.show()lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict=train_model()models=[lr,sgdr,ridge,lasso]
r2s=[]
mess=[]
maes=[]
nmse=[]
results=[]
plot_line(X,y,lr,'LinearRegression+'+ss)
plot_line(X,y,sgdr,'SGDRegressor'+ss)
plot_line(X,y,lasso,'lasso'+ss)
plot_line(X,y,ridge,'ridge'+ss)
print("sgdr_y_predict")
print(sgdr_y_predict)predicts=[lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict]
i=0
for model in models:result=evaluate(X_test,y_test,predicts[i],model)i=i+1results.append(result)# r2s.append(result[1])# mess.append(result[2])# maes.append(result[3])# nmse.append(result[0])#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
print(results)#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
plot(results[0][1:4],results[1][1:4],results[2][1:4],results[3][1:4])

在这里插入图片描述

3.4多项式回归degree对比实验


# 从 sklearn.datasets 导入波士顿房价数据读取器。
from sklearn.datasets import load_boston
# 从读取房价数据存储在变量 boston 中。
boston = load_boston()
# 输出数据描述。
from matplotlib import pyplot as plt
from matplotlib import font_manager
from matplotlib import pyplot as plt
import numpy as np
import matplotlib
# 参数设置
from sklearn.preprocessing import PolynomialFeatures
import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"]=False #该语句解决图像中的“-”负号的乱码问题# 从sklearn.cross_validation 导入数据分割器。
from sklearn.model_selection import train_test_split
# 导入 numpy 并重命名为 np。
import numpy as np
from sklearn.linear_model import Ridge,Lasso
X = boston.data
y = boston.target
# 随机采样 25% 的数据构建测试样本,其余作为训练样本。X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25)
# 分析回归目标值的差异。print("The max target value is", np.max(boston.target))
print("The min target value is", np.min(boston.target)) 
print("The average target value is", np.mean(boston.target))# 从 sklearn.preprocessing 导入数据标准化模块。
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import Normalizer
# 分别初始化对特征和目标值的标准化器。
ss_X = StandardScaler()
ss_y = StandardScaler()
ss="StandardScaler"
# 分别对训练和测试数据的特征以及目标值进行标准化处理。
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)
y_train[0]=y_train[0]+300
y_train = ss_y.fit_transform(y_train.reshape(-1, 1))y_test = ss_y.transform(y_test.reshape(-1, 1))# 从 sklearn.linear_model 导入 LinearRegression。
from sklearn.linear_model import LinearRegression
# 使用默认配置初始化线性回归器 LinearRegression。def train_model():poly_reg = PolynomialFeatures(degree=1)# 数据转换 x0-->1  x1-->x  x2-->x^2  x3-->x^3x_poly = poly_reg.fit_transform(X_train)# 建模#lin_reg = LinearRegression().fit(x_poly, y_data)lr = LinearRegression().fit(x_poly, y_train[:,0])# 使用训练数据进行参数估计。lr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lr_y_predict = lr.predict(X_test)# 从 sklearn.linear_model 导入 SGDRegressor。from sklearn.linear_model import SGDRegressor# 使用默认配置初始化线性回归器 SGDRegressor。poly_reg = PolynomialFeatures(degree=2)# 数据转换 x0-->1  x1-->x  x2-->x^2  x3-->x^3x_poly = poly_reg.fit_transform(X_train)sgdr =  LinearRegression().fit(x_poly, y_train[:,0])# 使用训练数据进行参数估计。sgdr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。sgdr_y_predict = sgdr.predict(X_test)poly_reg = PolynomialFeatures(degree=3)# 数据转换 x0-->1  x1-->x  x2-->x^2  x3-->x^3x_poly = poly_reg.fit_transform(X_train)ridge =  LinearRegression().fit(x_poly, y_train[:,0])# 使用训练数据进行参数估计。ridge.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。ridge_y_predict = ridge.predict(X_test)# Lassopoly_reg = PolynomialFeatures(degree=4)# 数据转换 x0-->1  x1-->x  x2-->x^2  x3-->x^3x_poly = poly_reg.fit_transform(X_train)lasso = LinearRegression().fit(x_poly, y_train[:,0])# 使用训练数据进行参数估计。lasso.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lasso_y_predict = lasso.predict(X_test)return lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predictdef evaluate(X_test,y_test,lr_y_predict,model):
# 使用 LinearRegression 模型自带的评估模块,并输出评估结果。nmse=model.score(X_test, y_test)print('The value of default measurement of LinearRegression is',nmse )# 从 sklearn.metrics 依次导入 r2_score、mean_squared_error 以及 mean_absoluate_error 用于回归性能的评估。from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error# 使用 r2_score 模块,并输出评估结果。r2=r2_score(y_test, lr_y_predict)print('The value of R-squared of LinearRegression is',r2 )# 使用 mean_squared_error 模块,并输出评估结果。#print(y_test)lr_y_predict=lr_y_predict.reshape(len(lr_y_predict),-1)#print(lr_y_predict)#print(mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)))mse=mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean squared error of LinearRegression is',mse)# 使用 mean_absolute_error 模块,并输出评估结果。mae= mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean absoluate error of LinearRegression is', mae)return round(nmse,2),round(r2,2),round(mse,2),round(mae,2)def plot(model1,model2,model3,model4):
# 数据classes = [ 'r2', 'mse', 'mae']# r2s = [87, 85, 89, 81, 78]# mess = [85, 98, 84, 79, 82]# nmse = [83, 85, 82, 87, 78]# 将横坐标班级先替换为数值x = np.arange(len(classes))width = 0.2r2s_x = xmess_x = x + widthnmse_x = x + 2 * widthmae_x = x + 3 * width# 绘图plt.bar(r2s_x, model1, width=width, color='gold', label='ploy-degree=1')plt.bar(mess_x,model2,width=width,color="silver",label="ploy-degree=2")plt.bar(nmse_x,model3,width=width, color="saddlebrown",label="ploy-degree=3")plt.bar(mae_x,model4,width=width, color="red",label="ploy-degree=4")plt.title("不同degree多项式回归+"+ss+"性能对比图")#将横坐标数值转换为班级plt.xticks(x + width, classes)#显示柱状图的高度文本for i in range(len(classes)):plt.text(r2s_x[i],model1[i], model1[i],va="bottom",ha="center",fontsize=8)plt.text(mess_x[i],model2[i], model2[i],va="bottom",ha="center",fontsize=8)plt.text(nmse_x[i],model3[i], model3[i],va="bottom",ha="center",fontsize=8)plt.text(mae_x[i],model4[i], model4[i],va="bottom",ha="center",fontsize=8)#显示图例plt.legend(loc="upper right")plt.show()#coding=gbk;def plot_line(X,y,model,name):#--------------------------------------------------------------#z是我们生成的等差数列,用来画出线性模型的图形。z=np.linspace(0,50,200).reshape(-1,1)plt.scatter(y,ss_y.inverse_transform(model.predict(ss_X.transform(X)).reshape(len(X),-1)),c="orange",edgecolors='k')plt.plot(z,z,c="k")plt.xlabel('y')plt.ylabel("y_hat")plt.title(name)plt.show()lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict=train_model()models=[lr,sgdr,ridge,lasso]
r2s=[]
mess=[]
maes=[]
nmse=[]
results=[]
#plot_line(X,y,lr,'LinearRegression+'+ss)
#plot_line(X,y,sgdr,'SGDRegressor'+ss)
#plot_line(X,y,lasso,'lasso'+ss)
#plot_line(X,y,ridge,'ridge'+ss)
print("sgdr_y_predict")
print(sgdr_y_predict)predicts=[lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict]
i=0
for model in models:result=evaluate(X_test,y_test,predicts[i],model)i=i+1results.append(result)# r2s.append(result[1])# mess.append(result[2])# maes.append(result[3])# nmse.append(result[0])#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
print(results)#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
plot(results[0][1:4],results[1][1:4],results[2][1:4],results[3][1:4])

截图:
在这里插入图片描述

3.5 岭回归alpha敏感度实验


# 从 sklearn.datasets 导入波士顿房价数据读取器。
from sklearn.datasets import load_boston
# 从读取房价数据存储在变量 boston 中。
boston = load_boston()
# 输出数据描述。
from matplotlib import pyplot as plt
from matplotlib import font_manager
from matplotlib import pyplot as plt
import numpy as np
import matplotlib
# 参数设置import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"]=False #该语句解决图像中的“-”负号的乱码问题# 从sklearn.cross_validation 导入数据分割器。
from sklearn.model_selection import train_test_split
# 导入 numpy 并重命名为 np。
import numpy as np
from sklearn.linear_model import Ridge,Lasso
X = boston.data
y = boston.target
# 随机采样 25% 的数据构建测试样本,其余作为训练样本。X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25)
# 分析回归目标值的差异。print("The max target value is", np.max(boston.target))
print("The min target value is", np.min(boston.target)) 
print("The average target value is", np.mean(boston.target))# 从 sklearn.preprocessing 导入数据标准化模块。
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import Normalizer
# 分别初始化对特征和目标值的标准化器。
ss_X = StandardScaler()
ss_y = StandardScaler()
ss="StandardScaler"
# 分别对训练和测试数据的特征以及目标值进行标准化处理。
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)
y_train[0]=y_train[0]+300
y_train = ss_y.fit_transform(y_train.reshape(-1, 1))y_test = ss_y.transform(y_test.reshape(-1, 1))# 从 sklearn.linear_model 导入 LinearRegression。
from sklearn.linear_model import LinearRegression
# 使用默认配置初始化线性回归器 LinearRegression。def train_model():lr = Ridge(alpha=2)# 使用训练数据进行参数估计。lr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lr_y_predict = lr.predict(X_test)# 从 sklearn.linear_model 导入 SGDRegressor。from sklearn.linear_model import SGDRegressor# 使用默认配置初始化线性回归器 SGDRegressor。sgdr = Ridge(alpha=5)# 使用训练数据进行参数估计。sgdr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。sgdr_y_predict = sgdr.predict(X_test)ridge = Ridge(alpha=10)# 使用训练数据进行参数估计。ridge.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。ridge_y_predict = ridge.predict(X_test)# Lassolasso =Ridge(alpha=15)# 使用训练数据进行参数估计。lasso.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lasso_y_predict = lasso.predict(X_test)return lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predictdef evaluate(X_test,y_test,lr_y_predict,model):
# 使用 LinearRegression 模型自带的评估模块,并输出评估结果。nmse=model.score(X_test, y_test)print('The value of default measurement of LinearRegression is',nmse )# 从 sklearn.metrics 依次导入 r2_score、mean_squared_error 以及 mean_absoluate_error 用于回归性能的评估。from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error# 使用 r2_score 模块,并输出评估结果。r2=r2_score(y_test, lr_y_predict)print('The value of R-squared of LinearRegression is',r2 )# 使用 mean_squared_error 模块,并输出评估结果。#print(y_test)lr_y_predict=lr_y_predict.reshape(len(lr_y_predict),-1)#print(lr_y_predict)#print(mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)))mse=mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean squared error of LinearRegression is',mse)# 使用 mean_absolute_error 模块,并输出评估结果。mae= mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean absoluate error of LinearRegression is', mae)return round(nmse,2),round(r2,2),round(mse,2),round(mae,2)def plot(model1,model2,model3,model4):
# 数据classes = [ 'r2', 'mse', 'mae']# r2s = [87, 85, 89, 81, 78]# mess = [85, 98, 84, 79, 82]# nmse = [83, 85, 82, 87, 78]# 将横坐标班级先替换为数值x = np.arange(len(classes))width = 0.2r2s_x = xmess_x = x + widthnmse_x = x + 2 * widthmae_x = x + 3 * width# 绘图plt.bar(r2s_x, model1, width=width, color='gold', label='ridge-alpha=2')plt.bar(mess_x,model2,width=width,color="silver",label="ridge-alpha=5")plt.bar(nmse_x,model3,width=width, color="saddlebrown",label="ridge-alpha=10")plt.bar(mae_x,model4,width=width, color="red",label="ridge-alpha=15")plt.title("不同alpha-ridge+"+ss+"性能对比图")#将横坐标数值转换为班级plt.xticks(x + width, classes)#显示柱状图的高度文本for i in range(len(classes)):plt.text(r2s_x[i],model1[i], model1[i],va="bottom",ha="center",fontsize=8)plt.text(mess_x[i],model2[i], model2[i],va="bottom",ha="center",fontsize=8)plt.text(nmse_x[i],model3[i], model3[i],va="bottom",ha="center",fontsize=8)plt.text(mae_x[i],model4[i], model4[i],va="bottom",ha="center",fontsize=8)#显示图例plt.legend(loc="upper right")plt.show()#coding=gbk;def plot_line(X,y,model,name):#--------------------------------------------------------------#z是我们生成的等差数列,用来画出线性模型的图形。z=np.linspace(0,50,200).reshape(-1,1)plt.scatter(y,ss_y.inverse_transform(model.predict(ss_X.transform(X)).reshape(len(X),-1)),c="orange",edgecolors='k')plt.plot(z,z,c="k")plt.xlabel('y')plt.ylabel("y_hat")plt.title(name)plt.show()lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict=train_model()models=[lr,sgdr,ridge,lasso]
r2s=[]
mess=[]
maes=[]
nmse=[]
results=[]
plot_line(X,y,lr,'LinearRegression+'+ss)
plot_line(X,y,sgdr,'SGDRegressor'+ss)
plot_line(X,y,lasso,'lasso'+ss)
plot_line(X,y,ridge,'ridge'+ss)
print("sgdr_y_predict")
print(sgdr_y_predict)predicts=[lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict]
i=0
for model in models:result=evaluate(X_test,y_test,predicts[i],model)i=i+1results.append(result)# r2s.append(result[1])# mess.append(result[2])# maes.append(result[3])# nmse.append(result[0])#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
print(results)#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
plot(results[0][1:4],results[1][1:4],results[2][1:4],results[3][1:4])

运行结果:
在这里插入图片描述

相关文章:

波士顿房价预测案例(python scikit-learn)---多元线性回归(多角度实验分析)

波士顿房价预测案例(python scikit-learn)—多元线性回归(多角度实验分析) 这次实验,我们主要从以下几个方面介绍: 一、相关框架介绍 二、数据集介绍 三、实验结果-优化算法对比实验,数据标准化对比实验&#xff0…...

在 Queue 中 poll()和 remove()有什么区别?

在Java的Queue接口中,poll()和remove()方法都用于从队列中删除并返回队列的头部元素,但是它们在队列为空时的行为有所不同。 poll()方法:当队列为空时,poll()方法会返回null,而不会抛出异常。这是它的主要特点&#x…...

实现鼠标在页面点击出现焦点及大十字星

近段时间,在完成项目进度情况显示时候,用户在操作鼠标时候,显示当鼠标所在位置对应时间如下图所示 代码实现步骤如下: 1.首先引用 jquery.1.7.js 2.再次引用raphael.js 3.然后引用graphics.js 4.最后引用mfocus.js 其中mfocu…...

如何在 7 天内掌握C++?

大家好,我是小康,今天我们来聊下如何快速学习 C 语言。 本篇文章适合于有 C 语言编程基础的小伙伴们,如果还没有学习过 C,请看这篇文章先入个门:C语言快速入门 引言: C,作为一门集面向过程和…...

FineBI概述

FineBI是一种商业智能(BI)软件,旨在帮助企业从数据中获取见解并做出更明智的业务决策。以下是FineBI的详细概述: 功能特性: 数据连接与整合:FineBI可以连接到各种数据源,包括数据库、数据仓库、…...

百度Create AI开发者大会剧透丨用好三大AI神器 ,人人都是开发者

程序员会消失,真的吗?大模型的下一站是什么?开发者的机会在哪里?什么才是最好用的AI应用开发工具?在4月16日举办的2024百度Create AI开发者大会上,百度创始人、董事长兼首席执行官李彦宏将就这些备受瞩目的…...

外包干了17天,技术倒退明显

先说情况,大专毕业,18年通过校招进入湖南某软件公司,干了接近6年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落! 而我已经在一个企业干了四年的功能…...

Unity类银河恶魔城学习记录12-8 p130 Skill Tree UI源代码

Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释,可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili UI.cs using UnityEngine;public class UI : MonoBehaviour {[SerializeFi…...

priority_queue的使用以及模拟实现

前言 上一期我们对stack和queue进行了使用的介绍,以及对底层的模拟实现!以及容器适配器做了介绍,本期我们在来介绍一个容器适配器priority_queue! 本期内容介绍 priority_queue的使用 仿函数介绍 priority_queue的模拟实现 什么…...

主机有被植入挖矿病毒篡改系统库文件

查看主机有被植入挖矿病毒篡改系统库文件的行为 排查方法 挖矿病毒被植入主机后,利用主机的运算力进行挖矿,主要体现在CPU使用率高达90%以上,有大量对外进行网络连接的日志记录。 Linux主机中挖矿病毒后的现象如下图所示: &…...

Python 推导式介绍

Python推导式是一种简洁而强大的语法,用于在一行代码中创建集合(list、set、dictionary)的方式。推导式使得代码更加简洁易读,提高了代码的可读性和可维护性。Python中有列表推导式、集合推导式和字典推导式三种类型。 列表推导式…...

VUE3和SpringBoot实现ChatGPT页面打字效果SSE流式数据展示

在做这个功能之前,本人也是走了很多弯路(花了好几天才搞好),你能看到本篇博文,那你就是找对地方了。百度上很多都是使用SseEmitter这种方式,这种方式使用的是websocket,使用这种方式就搞复杂了&…...

ClickHouse入门篇:一文带你学习ClickHouse

ClickHouse 是一个用于联机分析处理(OLAP)的列式数据库管理系统(DBMS)。由于其独特的数据存储和处理架构,ClickHouse 能够提供高速数据插入和实时查询性能。下面是对 ClickHouse 的详细介绍,包括其特性、应用场景和架构: 特性 列式存储: 数…...

基于小程序实现的校园失物招领系统

作者主页:Java码库 主营内容:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app等设计与开发。 收藏点赞不迷路 关注作者有好处 文末获取源码 技术选型 【后端】:Java 【框架】:spring…...

损失函数篇 | YOLOv8更换损失函数之Powerful-IoU(2024年最新IoU)

前言:Hello大家好,我是小哥谈。损失函数是机器学习中用来衡量模型预测值与真实值之间差异的函数。在训练模型时,我们希望通过不断调整模型参数,使得损失函数的值最小化,从而使得模型的预测值更加接近真实值。不同的损失函数适用于不同的问题,例如均方误差损失函数适用于回…...

(学习日记)2024.04.11:UCOSIII第三十九节:软件定时器

写在前面: 由于时间的不足与学习的碎片化,写博客变得有些奢侈。 但是对于记录学习(忘了以后能快速复习)的渴望一天天变得强烈。 既然如此 不如以天为单位,以时间为顺序,仅仅将博客当做一个知识学习的目录&a…...

wordpress全站开发指南-面向开发者及深度用户(全中文实操)--wordpress是什么

WordPress简介 WordPress是一个开源的内容管理系统(CMS),广泛用于创建和管理网站。它最初是作为一个博客平台开始的,但现在已经发展成为一个功能强大的网站建设工具,可以用于创建各种类型的网站,包括个人博…...

瑞_23种设计模式_访问者模式

文章目录 1 访问者模式(Visitor Pattern)1.1 介绍1.2 概述1.3 访问者模式的结构1.4 访问者模式的优缺点1.5 访问者模式的使用场景 2 案例一2.1 需求2.2 代码实现 3 案例二3.1 需求3.2 代码实现 4 拓展——双分派4.1 分派4.2 动态分派(多态&am…...

Docker网络代理配置 可能埋下的坑

Docker 网络代理配置 1. 在 /etc/systemd/system 目录下创建 docker.service.d 目录 sudo mkdir -p /etc/systemd/system/docker.service.d2. 在/etc/systemd/system/docker.service.d下创建 http-proxy.conf 文件 sudo touch /etc/systemd/system/docker.service.d/http-pr…...

外包干了3天,技术退步明显.......

先说一下自己的情况,大专生,19年通过校招进入杭州某软件公司,干了接近4年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落! 而我已经在一个企业干了四年的功能测…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...

django filter 统计数量 按属性去重

在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

微信小程序 - 手机震动

一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注&#xff1a;文档 https://developers.weixin.qq…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...