当前位置: 首页 > news >正文

【Java】JDK1.8 HashMap源码,put源码详细讲解

  📝个人主页:哈__

期待您的关注 

在Java中,HashMap结构是被经常使用的,在面试当中也是经常会被问到的。这篇文章我给大家分享一下我对于HashMap结构源码的理解。

HashMap的存储与一般的数组不同,HashMap的每一个元素存储的并不是一个值,而是一个引用类型的Node结点,这也就意味着这个Node结点有被扩充的可能,因为这个Node结点可以是一个链表的Head结点,也可以是一棵树的根节点。

HashMap的存储数组叫做table,也可以称作“桶”,试想这样的一个场景:我们在一排放了3个桶,同时我们有4个苹果,如果我们要把所有的苹果放到桶当中,那么必然有一个桶中 的苹果个数>=2。

这种情况在我们的HashMap中也会出现,我们的HashMap结构是把很多的数据存放到一个容量达不到元素个数的数组当中,就如同桶和苹果一样。

因此我们的HashMap结果会出现上图所示的一种冲突,我们成为散列冲突,也叫做Hash冲突 。

出现冲突不要怕,解决冲突就是了,我们的一个桶当中可以放两个苹果,自然HashMap的table数组的一个位置也可以存放两个元素。

问题来了,我们现在假设有16个桶,同时间断性的向桶中放苹果,而且还要能够方便我们后续去拿苹果和寻找苹果,那我们这16个桶还够用吗?我们这样子直接把苹果放进桶里,还能够方便我们后续找苹果吗?

行了,解决吧,现在假设你是一位苹果管理员,你该怎么优化一下?你看看这样子行不行,不就是放苹果、找苹果嘛,既然让我来管理,那我希望把苹果平均放到桶当中,每次我放的位置尽量不要和之前的苹果放的位置有冲突,如果桶多的话,你也不能一个一个桶去看吧,所以,我们定义了一个算法,我根据这个苹果的生产ID序列号去寻找对应的桶放进去,如同取余放置一样。这是个不错的思路。但序列号都是有规律的,这样会影响我们的放置,我们希望是一个很随机的结果,因此我们给这个序列号随机变动几个位置后在选择桶。在HashMap中,这样的序列号叫做hashCode值,经过一个扰动函数后,我们的到的扰动的值叫做hash。

如何存放的问题解决了,但苹果一旦多了还是会产生冲突,一个桶里放8个我还能找得到,但是一个桶里放20个,30个苹果,那我就找不到那个序列号的苹果了。

二叉树我们都学过,倘若我们把桶内的苹果以二叉树的方式进行存储,那这样我们在查找的时候是不是就省了很多时间呢?因此HashMap中的table内的一个元素列表长度>8的时候,进行树化操作。但也不是非要进行树化的,毕竟树化也要浪费很多资源。当我们的桶的数量<=64的时候,我们不进行树化操作,我们进行数组扩容,把table扩大2倍,这样的话,我们在放苹果的时候发生冲突的概率就会降低。但如果容量已经达到了64,我们就考虑把链表转为红黑树(也是二叉树)了。

以上的过程不知道你是否理解了没,放苹果的案例和HashMap存储元素的过程相似,现在我们来看代码吧。

一、HashMap中的变量

1.默认容量

HashMap无参构造方法调用时,我们的HashMap数组的初始容量是16。

     /*** 默认初始化的容量大小,且必须是2的整数倍*/static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

2.最大容量

记录了我们HashMap所能存储的最大的元素个数。

    /*** 我们的元素数组的最大的容量,如果我们设定的最大容量比这个数还大* 那我们就把容量设定为这个最大的值*/static final int MAXIMUM_CAPACITY = 1 << 30;

3.负载因子

负载因子决定了HashMap在存储更多数据时如何扩展其容量。默认情况下,当负载因子达到0.75时,HashMap会进行扩容。这意味着,当HashMap中的元素数量达到数组容量的0.75倍时,数组的大小就会翻倍,以便容纳更多的数据。

为什么选择0.75作为默认的负载因子呢?这并不是随意的选择,而是经过深思熟虑后的优化值。负载因子实际上是一个权衡空间和时间的参数。在理想情况下,如果负载因子为1,这意味着每个索引位置上都有一个键值对存在。然而,当两个或更多的键具有相同的哈希值时,就会发生冲突,这会导致查询效率降低。因此,通过设置一个适当的负载因子,可以平衡键值对的存储效率和查询效率。

通过将负载因子设置为0.75,可以在空间和时间效率之间取得平衡。这意味着,当数组接近其容量时,HashMap会进行扩容,以避免因哈希冲突而导致的性能下降。同时,这个值也避免了因频繁扩容而产生的额外开销。在大多数情况下,0.75的负载因子可以提供较好的性能。

    /*** 如果我们并没有自己初始化一个平衡因子,这个就是默认的平衡因子*/static final float DEFAULT_LOAD_FACTOR = 0.75f;

4.列表树化的阈值

    /*** 当列表的长度超过了8,达到9的时候就会把列表转为红黑树*/static final int TREEIFY_THRESHOLD = 8;

5.红黑树转列表的阈值

一个桶里的苹果往外拿了很多,就那么几个苹果我数的清,用不到树了。

    /*** 当树中的结点的个数小于6的时候我们就把红黑树转为列表了*/static final int UNTREEIFY_THRESHOLD = 6;

6.树化时的最小数组容量

     /*** 在我们的列表转为红黑树的时候,如果我们的数组长度(也就是容量)达不到64,那我们就扩充数组* 而不是进行红黑树的转化**/static final int MIN_TREEIFY_CAPACITY = 64;

 7.元素数组(存放我们插入的数据)

这就是我们的桶。

    transient Node<K,V>[] table;

8.数组的大小(并非容量,而是实际放了多少个数据结点到table数组中) 

    /*** 此映射中包含的键值映射数。*/transient int size;

这些变量看完了之后,我们在介绍一个结点类Node,我们的元素在存储的时候都是这个类型。

9.Node结点

 static class Node<K,V> implements Map.Entry<K,V> {final int hash; //hash值final K key;   //keyV value;    //valueNode<K,V> next;    //记录下一个元素
}

10.扩容阈值

当table中的元素个数达到了这个值的时候进行resize操作,并非所有node节点的个数,而是我们的一维table中存放元素的个数(存放的链表和树算一个元素)。

    /*** table中存放的元素的个数达到了这个值进行resize操作*/int threshold;

二、HashMap的put方法

我们只以无参构造的HashMap为例。

    HashMap<String,Integer> map = new HashMap<>();map.put("张三",18);

我们看看这个put方法到底干了些什么。

我们点进去这个put方法,发现调用的是putVal方法,这个方法有五个参数,第一个参数传入了一个hash方法,第二个就是我们的key,第三个就是value,而后边的两个是默认的boolean类型的值,我们不看后边的两个。

public V put(K key, V value) {return putVal(hash(key), key, value, false, true);}

hash到底是什么,我们上边其实也讲到过,这是一个扰动函数,意在把我们要插入的这个元素更加随机、均匀的分布到table中。想了解这个过程我们先往下走,到了具体的位置在讲解。

我们看看这个putVal方法。代码倒是挺多的,不过没关系,你就看我写的注释。

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {//这里初始化了一个tab用于保存我们最终的结果  还有一个临时的结点pNode<K,V>[] tab; Node<K,V> p; int n, i;//这种写法要弄清,=是赋值,==是判断,如果我们的table还没有初始化的话if ((tab = table) == null || (n = tab.length) == 0)//我们就把这个n记录成我们这个tab初始化后的大小n = (tab = resize()).length;//这里就是进行位置判断的代码了,如果当前遍历的结点是个空的,我们直接把node放到这个桶里if ((p = tab[i = (n - 1) & hash]) == null)tab[i] = newNode(hash, key, value, null);else { //如果当前位置不为空//定义一个e结点用于遍历Node<K,V> e; K k;//如果这个结点的key和我们插入元素的key相同,那我们把这个e指向这个结点if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))e = p;//但如果不同,而且这个结点还是个树形结点,我们调用专门的方法遍历树else if (p instanceof TreeNode)e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);else {//如果不是树,那就是链表了,我们进行链表遍历去插入我们的新元素for (int binCount = 0; ; ++binCount) {//如果我们遍历到的结点已经遍历完了,那我们把元素插入if ((e = p.next) == null) {p.next = newNode(hash, key, value, null);//如果达到了树化阈值,那我们进行树化操作//这里注意一下为什么是-1,因为我们从0开始遍历,当我们达到了7说明已经遍历了8次,同时上边进行了一次插入,结点数达到了9if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1sttreeifyBin(tab, hash);break;}//如果当前结点的key就是我们插入的key,我们不做操作,这是e是有指向的if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))break;p = e;}}//如果e不是空,就说明找到了一个key相同的结点,我们进行value的替换if (e != null) { // existing mapping for keyV oldValue = e.value;if (!onlyIfAbsent || oldValue == null)e.value = value;afterNodeAccess(e);//替换后就return了,不对table结构做影响return oldValue;}}//如果我们对table的结构影响了,我们把这个值+1++modCount;//看看把这个值插进去之后,是否达到了扩容阈值,并不是table中元素的长度满了之后才扩容的if (++size > threshold)resize();afterNodeInsertion(evict);return null;}

 

在上方的代码中你看到了这样的代码。这样代码就是判断我们元素放到哪个位置的。我们用桶的容量去和hash值进行与操作。

(p = tab[i = (n - 1) & hash

假设当前容量是16,那么你看一下这个与操作的核心部分是什么,n的前28位都是0,与后的结果也是0,所以真正影响元素位置的只有n的最后四位和元素hashcode的最后四位。结果也一定是0~15。


h.hashCode = 1101 0111 1011 1100 0101 1011 1011 1010

n-1               = 0000 0000 0000 0000 0000 0000 0000 1111


那么扰动函数的作用是什么呢。我们上边的与操作只算了元素hashcode的后4位,不够随机,我们想要让hashcode的前16位也要影响最后的结果。所以就有了扰动函数。 

static final int hash(Object key) {int h;return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);}

h.hashCode             = 1101 0111 1011 1100 0101 1011 1011 1010

h.hashCode >>>16  = 0000 0000 0000 0000 1101 0111 1011 1100 

我们取这两个值的与结果,这样我们的hashcode的高位也能扰动我们放的位置。并非单纯的低位和n-1去进行与运算了。

三、resize方法

在上边的代码中有个resize方法的调用,这个方法主要的目的是扩容table。这个resize方法看起来还是非常的恐怖哈。

resize方法解释了为什么数组的容量一定是二的整数倍。

final Node<K,V>[] resize() {//记录一下之前的tableNode<K,V>[] oldTab = table;//算一下之前table的容量int oldCap = (oldTab == null) ? 0 : oldTab.length;//记录一下之前table的扩容阈值int oldThr = threshold;//把新的容量和扩容阈值定义出来int newCap, newThr = 0;//如果已经进行过初始化了if (oldCap > 0) {//如果我们之前的空间大小已经达到了最大容量 -- 很少出现if (oldCap >= MAXIMUM_CAPACITY) {threshold = Integer.MAX_VALUE;return oldTab;}//否则的话 我们新的容量等于旧的容量*2  位移运算else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&oldCap >= DEFAULT_INITIAL_CAPACITY)//新的扩容阈值也*2newThr = oldThr << 1; // double threshold}//这个先不说了else if (oldThr > 0) // initial capacity was placed in thresholdnewCap = oldThr;// 这个else重要啊,如果我们没有进行过初始化,那我们就把新容量定位16 新的扩容阈值定为12else {               // zero initial threshold signifies using defaultsnewCap = DEFAULT_INITIAL_CAPACITY;newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);}//如果新的扩容阈值等于0 我们要进行处理等于新的容量×负载因子if (newThr == 0) {float ft = (float)newCap * loadFactor;newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?(int)ft : Integer.MAX_VALUE);}//修改我们的扩容阈值threshold = newThr;@SuppressWarnings({"rawtypes","unchecked"})Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];table = newTab;if (oldTab != null) {for (int j = 0; j < oldCap; ++j) {Node<K,V> e;if ((e = oldTab[j]) != null) {oldTab[j] = null;if (e.next == null)newTab[e.hash & (newCap - 1)] = e;else if (e instanceof TreeNode)((TreeNode<K,V>)e).split(this, newTab, j, oldCap);else { // preserve orderNode<K,V> loHead = null, loTail = null;Node<K,V> hiHead = null, hiTail = null;Node<K,V> next;do {next = e.next;if ((e.hash & oldCap) == 0) {if (loTail == null)loHead = e;elseloTail.next = e;loTail = e;}else {if (hiTail == null)hiHead = e;elsehiTail.next = e;hiTail = e;}} while ((e = next) != null);if (loTail != null) {loTail.next = null;newTab[j] = loHead;}if (hiTail != null) {hiTail.next = null;newTab[j + oldCap] = hiHead;}}}}}return newTab;}

我们分析一下下边的代码。写了注释的直接看看就好,关于树的我不说了,只说链表。

Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];table = newTab;//如果我们之前的table不为空的话我们要进行一下元素迁移if (oldTab != null) {for (int j = 0; j < oldCap; ++j) {Node<K,V> e;//如果当前结点不为空if ((e = oldTab[j]) != null) {//清空原来的table中的位置,便于垃圾回收oldTab[j] = null;//如果就一个node 把他搬到新的table中if (e.next == null)newTab[e.hash & (newCap - 1)] = e;//如果是树形结点 调用split方法else if (e instanceof TreeNode)((TreeNode<K,V>)e).split(this, newTab, j, oldCap);//如果是个链表else { // preserve order// 低链表     Node<K,V> loHead = null, loTail = null;//高链表Node<K,V> hiHead = null, hiTail = null;Node<K,V> next;do {next = e.next;//判断这个结点放到高链表或者低链表中if ((e.hash & oldCap) == 0) {if (loTail == null)loHead = e;elseloTail.next = e;loTail = e;}else {if (hiTail == null)hiHead = e;elsehiTail.next = e;hiTail = e;}} while ((e = next) != null);if (loTail != null) {loTail.next = null;newTab[j] = loHead;}if (hiTail != null) {hiTail.next = null;newTab[j + oldCap] = hiHead;}}}}}

 什么是高链表和低链表。在之前我们说到过元素是如何定位的,靠的是hash和数组容量-1的与操作。但如果我们数组容量不减1呢?因为我们的数组容量是2的整数倍,如果不减1,那么就说明只有一个位置为1,其他的全为0(假设容量是16)。


h.hashCode = 1101 0111 1011 1100 0101 1011 1011 1010

n                  = 0000 0000 0000 0000 0000 0000 0001 0000


如同上方的例子,这个元素到底分到哪里,就看这个元素的hash值的倒数第五位,如果是1,就在高链表,如果是0就在低链表。我们通过这样的方式来把元素分到低链表或者高链表当中。

for循环的最后把我们这个临时的低链表和高链表放到我们新的table中。 

最后将新的table返回。

相关文章:

【Java】JDK1.8 HashMap源码,put源码详细讲解

&#x1f4dd;个人主页&#xff1a;哈__ 期待您的关注 在Java中&#xff0c;HashMap结构是被经常使用的&#xff0c;在面试当中也是经常会被问到的。这篇文章我给大家分享一下我对于HashMap结构源码的理解。 HashMap的存储与一般的数组不同&#xff0c;HashMap的每一个元素存…...

自定义注解进行数据转换

前言&#xff1a; Java注解是一种元数据机制&#xff0c;可用于方法&#xff0c;字段&#xff0c;类等程序上以提供关于这些元素的额外信息。 以下内容是我自己写的一个小测试的demo,参考该文章进行编写&#xff1a;https://blog.csdn.net/m0_71621983/article/details/1318164…...

React - 你知道在React组件的哪个阶段发送Ajax最合适吗

难度级别:中级及以上 提问概率:65% 如果求职者被问到了这个问题,那么只是单纯的回答在哪个阶段发送Ajax请求恐怕是不够全面的。最好是先详细描述React组件都有哪些生命周期,最后再回过头来点题作答,为什么应该在这个阶段发送Ajax请求。那…...

spa、vue、elementUi

spa (single page application). 动态重写当前页面而非从服务器重新加载整个新页面。使应用程序更像一个桌面应用程序。所有的html、javascript、css通过单个页面检索加载资源。前端页面使用ajax与后端通信。一个项目只有一个html页面。所有的页面跳转都通过路由导航。 vue可用…...

tcp接受命令执行并回显

为了实现循环执行命令并能够多次从TCP客户端接收命令&#xff0c;您需要对上面的代码进行一些修改。下面是一个修改后的示例&#xff0c;它将在接收到新的TCP连接后进入一个循环&#xff0c;不断地读取命令、执行命令&#xff0c;并将结果发送回客户端&#xff0c;直到客户端断…...

LLMs之ToolAlpaca:ToolAlpaca(通用工具学习框架/工具使用语料库)的简介、安装和使用方法、案例应用之详细攻略

LLMs之ToolAlpaca&#xff1a;ToolAlpaca(通用工具学习框架/工具使用语料库)的简介、安装和使用方法、案例应用之详细攻略 目录 ToolAlpaca的简介 0、《ToolAlpaca: Generalized Tool Learning for Language Models with 3000 Simulated Cases》翻译与解读 1、数据集列表 2…...

TCP/IP协议介绍

TCP/IP协议 先看&#xff1a;程序员必备基础知识-TCP/IP协议详解.(超详细&#xff09; 太厉害了&#xff0c;终于有人能把TCP/IP协议讲的明明白白了&#xff01; 面试官&#xff1a;如何理解TCP/IP协议? 一个很全的介绍博客&#xff1a;史上最全的TCP/IP协议原理 对TCP三次握…...

选择排序解读

在计算机科学中&#xff0c;排序算法是一种将数据元素按照某种顺序排列的算法。今天&#xff0c;我们要探讨的是选择排序&#xff08;Selection Sort&#xff09;&#xff0c;这是一种简单直观的排序方法&#xff0c;通过不断选择剩余元素中的最小&#xff08;或最大&#xff0…...

Vue项目自动注入less、sass、scss、stylus全局变量

一、Vue2项目 // vue.config.js const path require(path) module.exports {css: {loaderOptions: {// 给 sass-loader 传递选项sass: {// / 是 src/ 的别名// 所以这里假设有 src/assets/style/var.sass 这个文件// 注意&#xff1a;在 sass-loader v8 中&#xff0c;这个选…...

DXP学习002-PCB编辑器的环境参数及电路板参数相关设置

目录 一&#xff0c;dxp的pcb编辑器环境 1&#xff0c;创建新的PCB设计文档 2&#xff0c;PCB编辑器界面 1&#xff09;布线工具栏 2&#xff09;公用工具栏 3&#xff09;层标签栏 ​编辑 3&#xff0c;PCB设计面板 1&#xff09;打开pcb设计面板 4&#xff0c;PCB观…...

Flutter 使用flutter_swiper_null_safety 实现轮播图

目录 引入flutter_swiper_null_safety 在pubspec.yaml文件中dependencies下添加以下依赖 然后执行命令进行下载 实现轮播图 引入flutter_swiper_null_safety 在pubspec.yaml文件中dependencies下添加以下依赖 flutter_swiper_null_safety: ^1.0.2 然后执行命令进行下载 flu…...

Maven的scope详解

依赖范围介绍 maven 项目不同的阶段引入到classpath中的依赖是不同的&#xff0c;例如&#xff0c;编译时&#xff0c;maven 会将与编译相关的依赖引入classpath中&#xff0c;测试时&#xff0c;maven会将测试相关的的依赖引入到classpath中&#xff0c;运行时&#xff0c;mav…...

如何修复在Deepin系统中因`apt-get autoremove systemd`导致的启动问题

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …...

LeetCode 每日一题 ---- 【2923. 找到冠军 I】

LeetCode 每日一题 ---- 【2923. 找到冠军 I】 2923.找到冠军I方法一&#xff1a;暴力求解 2923.找到冠军I 方法一&#xff1a;暴力求解 从头遍历一遍二维数组&#xff0c;如果发现 gird[x][y] 1&#xff0c;说明 x 队赢过 y 队&#xff0c;下面我们就只需要子再判断一下是否…...

CMakeLists常用命令

# 设置cmake最低版本 cmake_minimum_required(VERSION 3.2)# project命令用于指定cmake工程的名称&#xff0c;实际上&#xff0c;它还可以指定cmake工程的版本号&#xff08;VERSION关键字&#xff09;、 #简短的描述&#xff08;DESCRIPTION关键字&#xff09;、主页URL&…...

英语 倒装结构中的主语和助动词,用于强调 inversion

I am used to travelling by air and only on one occasion have I ever felt frightened. 1、翻译为中文&#xff1a;我习惯了乘坐飞机旅行&#xff0c;只有在一次经历中我感到过害怕。 2、分析时态和句子语法是否正确&#xff1a;该句子使用了现在完成时&#xff08;I am u…...

SQL注入---HTTP报头注入

文章目录 目录 文章目录 一.uagent注入 二.refeer注入 三.Cookie注入 前文中提到万能密钥的工作原理&#xff0c;然而万能密钥仅在源代码中没有代码审计&#xff0c;此时才被称之为万能密钥&#xff0c;而代码中有代码审计时需要分以下几种情况讨论 一.uagent注入 先看代码&a…...

docker安装sentinel

文章目录 前言安装docker指令安装制作docker-compose.yaml文件 查看网站 前言 Sentinel 是阿里巴巴开源的一款轻量级流量控制和熔断降级工具&#xff0c;可用于保护分布式系统中的服务。它可以帮助开发人员解决在分布式架构中面临的流量管理、服务保护、性能优化等问题。 安装…...

达梦的归档日志参数ARCH_RESERVE_TIME测试

达梦的参数ARCH_RESERVE_TIME测试 前面有提到和oracle相比&#xff0c;达梦的归档日志相关参数有个比较特别&#xff0c;可以通过设置它去规定归档日志的保留时间。 ARCH_RESERVE_TIME&#xff1a;归档日志保留时间&#xff0c;单位分钟&#xff0c;取值范围 0~2147483647。只…...

Linux网络 基础概念

目录 背景知识 互联网的发展 局域网和广域网 网络拓扑 网络协议栈 协议的概念 网络协议的分层 网络与操作系统的联系 网络传输的基本流程 IP地址和MAC地址 以太网通信 数据包的封装和分用 跨网段传输 背景知识 互联网的发展 计算机网络是计算机技术和通信技术相…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请&#xff0c;不同级别的经理有不同的审批权限&#xff1a; // 抽象处理者&#xff1a;审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...