多线程面试题
1. Sychronized的锁升级过程是怎样的?
2. Tomcat 中为什么要使用自定义类加载器?
3. 说说对线程安全的理解
4. 对守护线程的理解
5. 并发、并行、串行之间的区别
6. Java死锁如何避免?
7. 谈谈你对AQS的理解,AQS如何实现可重入锁?
8. 线程池的7个参数?
9. 线程池中的核心属性ctl是什么?
10. 线程池的执行流程?
11. 线程池的拒绝策略有哪些?
线程池的默认拒绝策略为AbortPolicy
,即丢弃任务并抛出RejectedExecutionException异常
当线程池的任务缓存队列已满
并且线程池中的线程数目达到maximumPoolSize
时,如果还有任务到来就会采取任务拒绝策略,通常有以下四种策略:
- ThreadPoolExecutor.
AbortPolicy
:丢弃任务并抛出RejectedExecutionException异常。
- ThreadPoolExecutor.
DiscardPolicy
:丢弃任务,但是不抛出异常
。 - ThreadPoolExecutor.
DiscardOldestPolicy
:丢弃队列最前面的任务,然后重新提交被拒绝的任务
- ThreadPoolExecutor.
CallerRunsPolicy
:由调用线程
(提交任务的线程)处理该任务
12. 线程池为什么是先添加队列而不是先创建最大线程?
13. 说说HashMap的put方法
14. 深拷贝和浅拷贝
15. Jdk1.7到Jdk1.8 HashMap发生了什么变化(底层)?
16. HashMap的扩容机制原理?
17. 谈谈ConcurrentHashMap的扩容机制
18. ThreadLocal的底层原理和使用场景
两大使用场景:
1.典型场景一:每个线程需要一个独享的对象(通常是工具类,典型需要使用的类有SimpleDateFormat和Random)
2.典型场景二:每个线程内需要保存全局变量(例如在拦截器中获取用户信息),可以让不同方法直接使用,避免参数传递的麻烦。
19. ReentrantLock中的公平锁和非公平锁的底层实现
20. ReentrantLock中tryLock()和lock()方法的区别
21. Sychronized的偏向锁、轻量级锁、重量级锁
22. 创建线程的几种方式
1 . 继承Thread类
- 实现Runnable接口
3. 实现Callable接口
4. 利用线程池来创建线程
23. 为什么不建议使用Executors来创建线程池
24. 线程池有哪几种状态?每种状态分别表示什么?
25. Sychronized和 ReentrantLock的区别?
26. 线程池的几种实现
Java线程池类型有四种,分别为:newCachedThreadPool、newFixedThreadPool、newSingleThreadExecutor、newScheduleThreadPool。
1、newCachedThreadPool
:创建一个可缓存线程池
,如果线程池长度超过处理所需,可灵活回收空闲线程
,若线程数不够,则新建线程。
2、newFixedThreadPool
:创建一个固定大小的线程池。可控制并发的线程数量,如果工作线程数量达到线程池初始的最大数,则将提交的任务存入到池队列中。
3、newSingleThreadExecutor
:创建一个单线程的线程池,即只创建唯一的工作者线程来执行任务,,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。
4、newScheduleThreadPool
:创建一个定长的线程池,支持定时及周期性任务执行。
27. 线程池核心数与最大线程数设置
CPU密集型
可以理解为 就是处理繁杂算法的操作,对硬盘等操作不是很频繁,比如一个算法非常之复杂,可能要处理半天,而最终插入到数据库的时间很快。
IO密集型
可以理解为简单的业务逻辑处理,比如计算1+1=2,但是要处理的数据很多,每一条都要去插入数据库,对数据库频繁操作。
核心线程:
- CPU密集型:核心线程数=CPU核心数(或 核心线程数=CPU核心数+1)。
- I/O密集型:核心线程数=2*CPU核心数(或 核心线程数=CPU核心数/(1-阻塞系数))。
最大线程:
- CPU密集型应用,最大线程设置为 N+1。
- IO密集型经验应用,最大线程设置为 2N+1 (N为CPU数量,下同)。
相关文章:

多线程面试题
1. Sychronized的锁升级过程是怎样的? 2. Tomcat 中为什么要使用自定义类加载器? 3. 说说对线程安全的理解 4. 对守护线程的理解 5. 并发、并行、串行之间的区别 6. Java死锁如何避免? 7. 谈谈你对AQS的理解,AQS如何实现可重入锁&…...
YARN运行流程
YARN是Hadoop资源管理器,他是一个通用资源管理平台和调度平台,可为上层应用提供统一的资源管理和调度,MapReduce等运算程序则相当于运行于操作系统上的应用程序,YARN为这些程序提供运算所需的资源内存、cpu。 YARN并不清楚用户提…...

java八股系列——SpringMVC从接受请求到完成响应的过程
Spring的MVC框架是围绕一个DispatcherServlet来设计的,这个Servlet会把请求分发给各个处理器,并支持可配置的处理器映射、视图渲染、本地化、时区与主题渲染等,甚至还能支持文件上传。 流程大致如下: 用户发起请求:用…...
Elasticsearch索引全生命周期
索引(Index)是Elasticsearch中最重要的概念之一,也是整个Elasticsearch操作的基础,它是相互关联的文档的一个集合。在Elasticsearch种,数据存储为 JSON 文档,每个文档将一组键(字段或属性的名称)与其对应的…...

汇编指令学习(LOOP)
一、xor异或操作,相同为0,不同为1xor eax,eaxeax异或eax,相同为0,并把结果存放到eax,简单说该语句就是想eax寄存器清零。二、ECX,计数器mov ecx,0x3将ecx寄存器设置为3三、DEC减一操作dec ecxecx寄存器的值…...

Linux 配置本地yum源
挂载光盘 进入包 配置路径,查看在线yum源 移动在线yum源到/home/目录下 进入vi,任意取名以.repo结尾即可 按住i进行编辑,输入以下内容 注意gpgcheck1是检验,配置本地yum源不需要检验 写入上图内容按住:输入wq,点击回车…...

【PyTorch】教程:torch.nn.LeakyReLU
torch.nn.LeakyReLU 原型 CLASS torch.nn.LeakyReLU(negative_slope0.01, inplaceFalse) 参数 negative_slope (float) – 控制负值斜率,默认为 1e-2inplace (bool) – in-place 操作,默认为 False 定义 LeakyReLU(x)max(0,x)negative_slope∗min…...
【刷题】-- 基础 -- 二分查找
精于结构、敏于心智、熟于代码 方式:对于会的代码:学会以最快的速度构建,并以最快的速度书写;对于不会的代码:学会(以最短的路径下)看懂别人的代码。学会使用参考文档、熟悉每一个容器。 刷题位…...

Spark MLlib 特征工程
Spark MLlib 特征工程预处理特征选择归一化离散化Embedding向量计算特征工程制约了模型效果 : 决定了模型效果的上限 , 而模型调优只是在不停地逼近上限好的特征工程才能有好的模型 特征处理函数分类 : 预处理 : 将模型无法直接消费的数据,转为可消费的数据形式特…...
CentOS7 完全卸载 php
在 CentOS 7 使用 yum install 简单安装 php 后,发现 php 版本 5.4 ,太低了! 然后,使用 yum remove 简单卸载后,发现 php 还在,不干净! 只好 rpm 慢慢卸载 rpm -qa |grep php php-gd-5.4.16-4…...
关于OCS认证里必须知晓的内容
【关于OCS认证里必须知晓的内容】美国非营利组织Textile Exchange推出的有机认证标准——有机含量标准(The Organic Content Standard),简称OCS。该标准通过跟踪有机原材料的种植从而监管整个有机产业链。OCS将应用于各种有机种植原料的验证,而不只限于有…...

创业做电商难不难?新人做电商怎么才能挣钱?
这几年经济不景气,创业做电商的人越来越多,但是,对于多数人来说,一开始做电商,都是试错成本,没有系统学习或者是跟着半吊子二把刀学的,结果赔钱就算了,新人创业做电商到底难不难&…...

【项目设计】高并发内存池(七)[性能测试和提升]
🎇C学习历程:入门 博客主页:一起去看日落吗持续分享博主的C学习历程博主的能力有限,出现错误希望大家不吝赐教分享给大家一句我很喜欢的话: 也许你现在做的事情,暂时看不到成果,但不要忘记&…...
PHP:Laravel cast array json数据存数据库时unicode 编码问题和update更新不触发数据转换
目录问题描述问题解决方式一:自定义属性方式二:继承覆写方式三:trait复用方式四:定义Cast子类update不生效参考文章问题描述 Model示例 class UserModel extends Model {protected $table tb_user;protected $casts [alias …...

自动化测试总结--断言
采购对账测试业务流程中,其中一个测试步骤总是失败,原因是用例中参数写错及断言不明确 一、问题现象: 采购对账主流程中,其中一个步骤失败了,会导致这个套件一直失败 图(1)测试报告视图中&…...

传输线的物理基础(三):传输线的瞬时阻抗
每个信号都有一个上升时间 RT,通常是从 10% 到 90% 的电压电平测量的。当信号沿传输线向下移动时,前沿在传输线上展开并具有空间范围。如果我们可以冻结时间并观察电压分布向外移动时的大小,我们会发现类似下图的东西。传输线上上升时间的长度…...

第六章:多线程
第六章:多线程 6.1:程序、进程、线程基本概念 程序 程序program是为了完成特定任务、用某种语言编写的一组指令的集合。即指一段静态的代码,静态对象。 进程 进程process是程序的一次执行过程,或是正在运行的一个程序。是一个…...

铁路与公路
蓝桥杯集训每日一题acwing4074 某国家有 n 个城市(编号 1∼n)和 m 条双向铁路。 每条铁路连接两个不同的城市,没有两条铁路连接同一对城市。 除了铁路以外,该国家还有公路。 对于每对不同的城市 x,y,当且仅当它们之…...

GitHub Copilot 全新升级,工作效率提升 55%
2021年 6 月,GitHub 和 OpenAI 推出了 GitHub Copilot 预览版,可根据命名或者正在编辑的代码上下文为开发者提供代码建议,被称为“你的 AI 结对程序员”。 近日,GitHub 宣布,经过去年 12 月以来的短暂测试后ÿ…...

【IoT】《天道》中音响案例的SWOT分析
在20世纪80年代初,SWOT最初是由美国知名管理学教授海因茨韦里克提出的。 之后这个工具就经常被用于企业的战略分析、竞争对手分析等场景。 在每年例行的公司产品规划过程中,我个人也经常使用这个工具。 由于涉及一些公司商业上的信息,下面会用…...

51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...

Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...

跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...

基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...

select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...