当前位置: 首页 > news >正文

微电网优化:基于肝癌算法(Liver Cancer algorithm, LCA)的微电网优化(提供MATLAB代码)

一、微电网优化模型

微电网是一个相对独立的本地化电力单元,用户现场的分布式发电可以支持用电需求。为此,您的微电网将接入、监控、预测和控制您本地的分布式能源系统,同时强化供电系统的弹性,保障您的用电更经济。您可以在连接到电网或断开电网连接状态下使用微电网。当电网停限电或用电成本过高时,微电网会自动响应。微电网控制系统可实现对发电、储电和用电的综合管理调度。与电网在集中式发电厂发电,然后沿着发-输-配-变-用的单向能量传递不同,微电网重点关注用户本地的分布式发电系统。对于发电,微电网通常使用光伏、柴油发电机和风机等可再生能源的组合。微电网可以结合储能系统来储存电力,通过智慧储能调度策略在停电或电网需求高峰时进行充放电操作。

参考文献:

[1]李兴莘,张靖,何宇,等.基于改进粒子群算法的微电网多目标优化调度[J].电力科学与工程, 2021, 37(3):7

二、算法简介

肝癌算法(Liver Cancer algorithm, LCA)模拟肝肿瘤的生长和接管过程。它使用进化搜索方法,模拟肝脏肿瘤在接管肝脏器官时的行为。肿瘤复制和扩散到其他器官的能力激发了该算法的灵感。LCA算法是利用遗传算子和基于随机对立的学习(ROBL)策略开发的,可以有效地平衡局部和全局搜索并探索搜索空间。

参考文献:

Houssein EH, Oliva D, Samee NA, Mahmoud NF, Emam MM. Liver Cancer Algorithm: A novel bio-inspired optimizer. Comput Biol Med. 2023 Oct;165:107389. doi: 10.1016/j.compbiomed.2023.107389. Epub 2023 Aug 30. PMID: 37678138.

三、部分代码

close all;
clear ; 
clc;
global P_load; %电负荷
global WT;%风电
global PV;%光伏
%%
TestProblem=1;
[lb,ub,dim,fobj] = GetFunInfo(TestProblem);
SearchAgents_no=50; % Number of search agents
Max_iteration=1000; % Maximum number of iterations
[Best_score,Xbest,Convergence_curve]=LCA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);%% 画结果图
figure(1)
semilogy(Convergence_curve,'m-','linewidth',2);
legend('LCA');
xlabel('迭代次数')
ylabel('运行成本与环境保护成本之和')
saveas(gca,'1.jpg');

四、部分结果

五、完整MATLAB代码

微电网优化:基于肝癌算法(Liver Cancer algorithm, LCA)的微电网优化(提供MATLAB代码)

相关文章:

微电网优化:基于肝癌算法(Liver Cancer algorithm, LCA)的微电网优化(提供MATLAB代码)

一、微电网优化模型 微电网是一个相对独立的本地化电力单元,用户现场的分布式发电可以支持用电需求。为此,您的微电网将接入、监控、预测和控制您本地的分布式能源系统,同时强化供电系统的弹性,保障您的用电更经济。您可以在连接…...

VUE_H5页面跳转第三方地图导航,兼容微信浏览器

当前项目是uniapp项目,若不是需要替换uni.showActionSheet选择api onMap(address , organName , longitude 0, latitude 0){var ua navigator.userAgent.toLowerCase();var isWeixin ua.indexOf(micromessenger) ! -1;if(isWeixin) {const mapUrl_tx "…...

智慧安全运营:智能化运维,确保服务无忧

智慧安全运营:智能化运维,确保服务无忧 中国联通新一代全球智云数据中心采用先进的智能化运维管理系统,实现对数据中心设施、IT设备、能源消耗、环境参数等全方位、实时监控。通过物联网技术、人工智能算法以及大数据分析,运维团…...

R-tree总结

引言: 在处理空间数据和地理信息系统(GIS)中,高效的空间索引机制对于提升查询性能至关重要。R-tree是一种流行的平衡树数据结构,专门用于索引多维信息,如二维的地理坐标或三维的物体位置。它以其灵活性、高…...

Python 与机器学习,在服务器使用过程中,常用的 Linux 命令包括哪些?

🍉 CSDN 叶庭云:https://yetingyun.blog.csdn.net/ 本博客旨在分享在实际开发过程中,开发者需要了解并熟练运用的 Linux 操作系统常用命令。Linux 作为一种操作系统,与 Windows 或 MacOS 并驾齐驱,尤其在服务器和开发环…...

js通过Object.defineProperty实现数据响应式

目录 数据响应式属性描述符propertyResponsive 依赖收集依赖队列寻找依赖 观察器 派发更新Observer完整代码关于数据响应式关于Object.defineProperty的限制 数据响应式 假设我们现在有这么一个页面 <!DOCTYPE html> <html lang"en"><head><m…...

docker最简单教程(使用dockerfile构建环境)

一 手里有的东西 安装好的docker+dockerfile 二 操作 只需要在你的dockerfile文件下执行命令 docker build -t="xianhu/centos:gitdir" . 将用户名、操作系统和tag进行修改就可以了,这就相当于在你本地安装了一个docker环境,然后执行 docker run -it xianhu/ce…...

Vue2 —— 学习(三)

目录 一、绑定 class 样式 &#xff08;一&#xff09;字符串写法 1.流程介绍 2.代码实现 &#xff08;二&#xff09;数组写法 1.流程介绍 2.代码实现 &#xff08;三&#xff09;对象写法 1.流程介绍 2.代码实现 二、绑定 style 样式&#xff08;了解&#xff…...

Qt Creator 12.0.2 debug 无法查看变量的值 Expression too Complex

鼠标放在局部变量上提示“expression too complex”。 在调试窗口也看不到局部变量的值。 这应该是qt的一个bug&#xff0c;https://bugreports.qt.io/browse/QTCREATORBUG-24180 暂时解决方法&#xff1a; 如下图&#xff0c;需要右键项目然后执行"Clean"和&quo…...

LeetCode-Java:303、304区域检索(前缀和)

文章目录 题目303、区域和检索&#xff08;数组不可变&#xff09;304、二维区域和检索&#xff08;矩阵不可变&#xff09; 解①303&#xff0c;一维前缀和②304&#xff0c;二维前缀和 算法前缀和一维前缀和二维前缀和 题目 303、区域和检索&#xff08;数组不可变&#xff…...

出海业务的网络安全挑战

出海业务的扩展带来了巨大的市场机遇&#xff0c;同时也带来了不少网络安全挑战&#xff1a; 数据泄露与隐私保护&#xff1a;跨境数据传输增加了数据被截获和泄露的风险。地理位置限制和审查&#xff1a;某些地区的网络审查和地理位置限制可能阻碍企业正常开展业务。网络攻击…...

蓝桥杯考前准备— — c/c++

蓝桥杯考前准备— — c/c 对于输入输出函数 如果题目中有要求规定输入数据的格式与输出数据的格式&#xff0c;最好使用scanf()和prinrf()函数。 例如&#xff1a;输入的数据是 2020-02-18&#xff0c;则使用scanf("%d-%d-%d",&year,&mouth,&day)即可…...

【MATLAB源码-第4期】基于MATLAB的1024QAM误码率曲线,以及星座图展示。

1、算法描述 正交幅度调制&#xff08;QAM&#xff0c;Quadrature Amplitude Modulation&#xff09;是一种在两个正交载波上进行幅度调制的调制方式。这两个载波通常是相位差为90度&#xff08;π/2&#xff09;的正弦波&#xff0c;因此被称作正交载波。这种调制方式因此而得…...

数据结构-----枚举、泛型进阶(通配符?)

文章目录 枚举1 背景及定义2 使用3 枚举优点缺点4 枚举和反射4.1 枚举是否可以通过反射&#xff0c;拿到实例对象呢&#xff1f; 5 总结 泛型进阶1 通配符 ?1.1 通配符解决什么问题1.2 通配符上界1.3 通配符下界 枚举 1 背景及定义 枚举是在JDK1.5以后引入的。主要用途是&am…...

线上问题监控 Sentry 接入全过程

背景&#xff1a; 线上偶发问题出现后 &#xff0c;测试人员仅通过接口信息无法复现错误场景&#xff1b;并且线上环境的监控&#xff0c;对于提高系统的稳定性 &#xff08;降低脱发率&#xff09; 至关重要&#xff1b;现在线上监控工具这个多&#xff0c;为什么选择Sentry?…...

【数据库(MySQL)基础】以MySQL为例的数据库基础

文章目录 0. 本文用到的emp表,dept表,salgrade表1. MySQL入门2. 简单查询3. 字段计算4. 条件查询4.1 and4.2 null4.3 or4.4 and和or的优先级4.4 in 和 not in4.5 模糊查询 5. 排序5.1 简单排序5.2 两个字段排序5.3 综合排序 6. 一些常用函数6.1 大小写转换6.2 substr子字符串6.…...

权限修饰符,代码块,抽象类,接口.Java

1&#xff0c;权限修饰符 权限修饰符&#xff1a;用来控制一个成员能够被访问的范围可以修饰成员变量&#xff0c;方法&#xff0c;构造方法&#xff0c;内部类 &#x1f47b;&#x1f457;&#x1f451;权限修饰符的分类 &#x1f9e3;四种作用范围由小到大(private<空着…...

CSS设置文本

目录 概述&#xff1a; text-aling: text-decoration: text-transform: text-indent: line-height: letter-spacing: word-spacing: text-shadow: vertical-align: white-space: direction: 概述&#xff1a; 在CSS中我们可以设置文本的属性&#xff0c;就像Word文…...

【svg】—— java提取svg中的颜色

需要针对svg元素进行解析&#xff0c;并提取其中的颜色&#xff0c;首先需要知道svg中的颜色。针对svg中颜色的格式大致可以一般有纯色和渐变两种形式。对于渐变有分为&#xff1a;线性渐变和放射性渐变针对svg中的颜色支持16进制的格式&#xff0c;又可以支持RGB的格式&#x…...

论文分享 | FAST'23 阿里云提出的针对SMR优化的存储引擎SMRSTORE

今天分享的一篇最近阅读的论文是FAST23的SMRstore: A Storage Engine for Cloud Object Storage on HM-SMR Drives。 https://www.usenix.org/conference/fast23/presentation/zhou 这篇文章是由阿里巴巴公司完成的&#xff0c;在这篇文章中&#xff0c;团队针对SMR的特性提出了…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

MeshGPT 笔记

[2311.15475] MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers https://library.scholarcy.com/try 真正意义上的AI生成三维模型MESHGPT来袭&#xff01;_哔哩哔哩_bilibili GitHub - lucidrains/meshgpt-pytorch: Implementation of MeshGPT, SOTA Me…...

嵌入式面试常问问题

以下内容面向嵌入式/系统方向的初学者与面试备考者,全面梳理了以下几大板块,并在每个板块末尾列出常见的面试问答思路,帮助你既能夯实基础,又能应对面试挑战。 一、TCP/IP 协议 1.1 TCP/IP 五层模型概述 链路层(Link Layer) 包括网卡驱动、以太网、Wi‑Fi、PPP 等。负责…...

性能优化中,多面体模型基本原理

1&#xff09;多面体编译技术是一种基于多面体模型的程序分析和优化技术&#xff0c;它将程序 中的语句实例、访问关系、依赖关系和调度等信息映射到多维空间中的几何对 象&#xff0c;通过对这些几何对象进行几何操作和线性代数计算来进行程序的分析和优 化。 其中&#xff0…...

【学习记录】使用 Kali Linux 与 Hashcat 进行 WiFi 安全分析:合法的安全测试指南

文章目录 &#x1f4cc; 前言&#x1f9f0; 一、前期准备✅ 安装 Kali Linux✅ 获取支持监听模式的无线网卡 &#x1f6e0; 二、使用 Kali Linux 进行 WiFi 安全测试步骤 1&#xff1a;插入无线网卡并确认识别步骤 2&#xff1a;开启监听模式步骤 3&#xff1a;扫描附近的 WiFi…...