当前位置: 首页 > news >正文

LeetCode-Java:303、304区域检索(前缀和)

文章目录

    • 题目
      • 303、区域和检索(数组不可变)
      • 304、二维区域和检索(矩阵不可变)
      • ①303,一维前缀和
      • ②304,二维前缀和
    • 算法
      • 前缀和
        • 一维前缀和
        • 二维前缀和

题目

303、区域和检索(数组不可变)

给定一个整数数组 nums,处理以下类型的多个查询:

  1. 计算索引 leftright (包含 leftright)之间的 nums 元素的 ,其中 left <= right

实现 NumArray 类:

  • NumArray(int[] nums) 使用数组 nums 初始化对象
  • int sumRange(int i, int j) 返回数组 nums 中索引 leftright 之间的元素的 总和 ,包含 leftright 两点(也就是 nums[left] + nums[left + 1] + ... + nums[right] )

示例 1:

输入:
["NumArray", "sumRange", "sumRange", "sumRange"]
[[[-2, 0, 3, -5, 2, -1]], [0, 2], [2, 5], [0, 5]]
输出:
[null, 1, -1, -3]解释:
NumArray numArray = new NumArray([-2, 0, 3, -5, 2, -1]);
numArray.sumRange(0, 2); // return 1 ((-2) + 0 + 3)
numArray.sumRange(2, 5); // return -1 (3 + (-5) + 2 + (-1)) 
numArray.sumRange(0, 5); // return -3 ((-2) + 0 + 3 + (-5) + 2 + (-1))

304、二维区域和检索(矩阵不可变)

给定一个二维矩阵 matrix,以下类型的多个请求:

  • 计算其子矩形范围内元素的总和,该子矩阵的 左上角(row1, col1)右下角(row2, col2)

实现 NumMatrix 类:

  • NumMatrix(int[][] matrix) 给定整数矩阵 matrix 进行初始化
  • int sumRegion(int row1, int col1, int row2, int col2) 返回 左上角 (row1, col1)右下角 (row2, col2) 所描述的子矩阵的元素 总和

示例 1:

在这里插入图片描述

输入: 
["NumMatrix","sumRegion","sumRegion","sumRegion"]
[[[[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]],[2,1,4,3],[1,1,2,2],[1,2,2,4]]
输出: 
[null, 8, 11, 12]解释:
NumMatrix numMatrix = new NumMatrix([[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]);
numMatrix.sumRegion(2, 1, 4, 3); // return 8 (红色矩形框的元素总和)
numMatrix.sumRegion(1, 1, 2, 2); // return 11 (绿色矩形框的元素总和)
numMatrix.sumRegion(1, 2, 2, 4); // return 12 (蓝色矩形框的元素总和)

①303,一维前缀和

class Solution {public int[] productExceptSelf(int[] nums) {int len=nums.length;int[] answer=new int[len];answer[0]=1;for(int i=1;i<len;i++){answer[i]=nums[i-1]*answer[i-1];}int R=nums[len-1]; // R存储右侧所有元素乘积for (int i = len - 2; i >= 0; i--) {answer[i] = answer[i] * R;R=R*nums[i];}return answer;}
}

②304,二维前缀和

class NumMatrix {int[][] sum;public NumMatrix(int[][] matrix) {int m=matrix.length,n=matrix[0].length;sum=new int[m+1][n+1];for(int i=1;i<=m;i++){for(int j=1;j<=n;j++){sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+matrix[i-1][j-1];}}}public int sumRegion(int row1, int col1, int row2, int col2) {return sum[row2+1][col2+1]-sum[row1][col2+1]-sum[row2+1][col1]+sum[row1][col1];}
}

算法

前缀和

前缀和是一种常见的算法技巧,用于快速计算数组中某个区间内元素的和,通常用于优化处理大量的区间求和问题,比如给定一个数组,询问其中某个连续区间内元素的和。

算法原理: 前缀和的核心思想是通过对数组进行预处理,计算出从数组开头到每个位置的元素累加和,然后利用这些预先计算好的累加和,在O(1)时间内求出任意区间的和。假设给定数组为A,其前缀和数组为prefix,其中prefix[i]表示数组A从0到i的元素和。

一维前缀和

假设给定数组为A = [1, 2, 3, 4, 5],其前缀和数组为prefix = [1, 3, 6, 10, 15]。

但在①②中,A数组的前缀和应当为prefix = [0,1, 3, 6, 10, 15],比原数组要多一个。

在计算任意区间的和时,通过在前缀和数组中添加0,可以统一处理起始位置为0的边界情况,无需单独考虑。例如,对于查询区间[0, 3],直接使用prefix[3]即可得到结果,无需特殊处理。

具体使用的时候建议用草稿纸绘制相关的数组或者矩阵的图形,进行检验。

二维前缀和

二维的前缀和更为复杂,

A = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]

prefix = [ [1, 3, 6], [5, 12, 21], [12, 27, 45] ]

prefix[i] [j] = A[i] [j] + prefix[i-1] [j] + prefix[i] [j-1] - prefix[i-1] [j-1]

可以用下图帮助理解(图源LeetCode:负雪明烛):

至于输出的公式,也类似于上面的用右下角位置加上左上角-1的位置减去区域右上角和左下角:

area=sum[row2+1] [col2+1]-sum[row1] [col2+1]-sum[row2+1] [col1]+sum[row1] [col1](为了方便书写代码,实际矩阵比原矩阵大一圈,所以这里所有的加减都在原矩阵基础上+1)

相关文章:

LeetCode-Java:303、304区域检索(前缀和)

文章目录 题目303、区域和检索&#xff08;数组不可变&#xff09;304、二维区域和检索&#xff08;矩阵不可变&#xff09; 解①303&#xff0c;一维前缀和②304&#xff0c;二维前缀和 算法前缀和一维前缀和二维前缀和 题目 303、区域和检索&#xff08;数组不可变&#xff…...

出海业务的网络安全挑战

出海业务的扩展带来了巨大的市场机遇&#xff0c;同时也带来了不少网络安全挑战&#xff1a; 数据泄露与隐私保护&#xff1a;跨境数据传输增加了数据被截获和泄露的风险。地理位置限制和审查&#xff1a;某些地区的网络审查和地理位置限制可能阻碍企业正常开展业务。网络攻击…...

蓝桥杯考前准备— — c/c++

蓝桥杯考前准备— — c/c 对于输入输出函数 如果题目中有要求规定输入数据的格式与输出数据的格式&#xff0c;最好使用scanf()和prinrf()函数。 例如&#xff1a;输入的数据是 2020-02-18&#xff0c;则使用scanf("%d-%d-%d",&year,&mouth,&day)即可…...

【MATLAB源码-第4期】基于MATLAB的1024QAM误码率曲线,以及星座图展示。

1、算法描述 正交幅度调制&#xff08;QAM&#xff0c;Quadrature Amplitude Modulation&#xff09;是一种在两个正交载波上进行幅度调制的调制方式。这两个载波通常是相位差为90度&#xff08;π/2&#xff09;的正弦波&#xff0c;因此被称作正交载波。这种调制方式因此而得…...

数据结构-----枚举、泛型进阶(通配符?)

文章目录 枚举1 背景及定义2 使用3 枚举优点缺点4 枚举和反射4.1 枚举是否可以通过反射&#xff0c;拿到实例对象呢&#xff1f; 5 总结 泛型进阶1 通配符 ?1.1 通配符解决什么问题1.2 通配符上界1.3 通配符下界 枚举 1 背景及定义 枚举是在JDK1.5以后引入的。主要用途是&am…...

线上问题监控 Sentry 接入全过程

背景&#xff1a; 线上偶发问题出现后 &#xff0c;测试人员仅通过接口信息无法复现错误场景&#xff1b;并且线上环境的监控&#xff0c;对于提高系统的稳定性 &#xff08;降低脱发率&#xff09; 至关重要&#xff1b;现在线上监控工具这个多&#xff0c;为什么选择Sentry?…...

【数据库(MySQL)基础】以MySQL为例的数据库基础

文章目录 0. 本文用到的emp表,dept表,salgrade表1. MySQL入门2. 简单查询3. 字段计算4. 条件查询4.1 and4.2 null4.3 or4.4 and和or的优先级4.4 in 和 not in4.5 模糊查询 5. 排序5.1 简单排序5.2 两个字段排序5.3 综合排序 6. 一些常用函数6.1 大小写转换6.2 substr子字符串6.…...

权限修饰符,代码块,抽象类,接口.Java

1&#xff0c;权限修饰符 权限修饰符&#xff1a;用来控制一个成员能够被访问的范围可以修饰成员变量&#xff0c;方法&#xff0c;构造方法&#xff0c;内部类 &#x1f47b;&#x1f457;&#x1f451;权限修饰符的分类 &#x1f9e3;四种作用范围由小到大(private<空着…...

CSS设置文本

目录 概述&#xff1a; text-aling: text-decoration: text-transform: text-indent: line-height: letter-spacing: word-spacing: text-shadow: vertical-align: white-space: direction: 概述&#xff1a; 在CSS中我们可以设置文本的属性&#xff0c;就像Word文…...

【svg】—— java提取svg中的颜色

需要针对svg元素进行解析&#xff0c;并提取其中的颜色&#xff0c;首先需要知道svg中的颜色。针对svg中颜色的格式大致可以一般有纯色和渐变两种形式。对于渐变有分为&#xff1a;线性渐变和放射性渐变针对svg中的颜色支持16进制的格式&#xff0c;又可以支持RGB的格式&#x…...

论文分享 | FAST'23 阿里云提出的针对SMR优化的存储引擎SMRSTORE

今天分享的一篇最近阅读的论文是FAST23的SMRstore: A Storage Engine for Cloud Object Storage on HM-SMR Drives。 https://www.usenix.org/conference/fast23/presentation/zhou 这篇文章是由阿里巴巴公司完成的&#xff0c;在这篇文章中&#xff0c;团队针对SMR的特性提出了…...

题目:建造房屋 (蓝桥OJ3362)

问题描述: 代码: #include<bits/stdc.h> using namespace std; int n, m, k, ans, mod 1e9 7; long long dp[55][2605]; /*dp[i][j]&#xff1a;第i个街道上建j个房屋的总方案数枚举所有的转移&#xff0c;累加到dp[n][k]即总方案数 */ int main() {cin >> n &…...

智能合约平台开发指南

随着区块链技术的普及&#xff0c;智能合约平台已经成为了这个领域的一个重要趋势。智能合约可以自动化执行合同条款&#xff0c;大大减少了执行和监督合同条款所需的成本和时间。那么&#xff0c;如何开发一个智能合约平台呢&#xff1f;以下是一些关键步骤。 一、选择合适的区…...

数学建模-最优包衣厚度终点判别法(主成分分析)

&#x1f49e;&#x1f49e; 前言 hello hello~ &#xff0c;这里是viperrrrrrr~&#x1f496;&#x1f496; &#xff0c;欢迎大家点赞&#x1f973;&#x1f973;关注&#x1f4a5;&#x1f4a5;收藏&#x1f339;&#x1f339;&#x1f339; &#x1f4a5;个人主页&#xff…...

Mysql内存表及使用场景(12/16)

内存表&#xff08;Memory引擎&#xff09; InnoDB引擎使用B树作为主键索引&#xff0c;数据按照索引顺序存储&#xff0c;称为索引组织表&#xff08;Index Organized Table&#xff09;。 Memory引擎的数据和索引分开存储&#xff0c;数据以数组形式存放&#xff0c;主键索…...

Django交易商场

Hello&#xff0c;我是小恒不会java 最近学习django&#xff0c;写了一个demo,学到了不少东西。 我在GitHub上开源了&#xff0c;提示‘自行查看代码&#xff0c;维护&#xff0c;运行’。 最近有事&#xff0c;先发布代码了&#xff0c;我就随缘维护更新吧 介绍&#xff1a; 定…...

华为校园公开课走入上海交大,鸿蒙成为专业核心课程

4月12日&#xff0c;华为校园公开课在中国上海交通大学成功举办&#xff0c;吸引了来自计算机等相关专业的150余名学生参加。据了解&#xff0c;由吴帆、陈贵海、过敏意、吴晨涛、刘生钟等教授在中国上海交通大学面向计算机系本科生开设的《操作系统》课程&#xff0c;是该系学…...

【会员单位】泰州玉安环境工程有限公司

中华环保联合会理事单位 水环境治理专业委员会副主任委员单位 我会为会员单位提供服务&#xff1a; 1、企业宣传与技术项目对接&#xff1b; 2、企业标准、行业标准制定&#xff1b; 3、院士专家指导与人才培训 4、国际与国内会议交流 5、专精特新、小巨人等申报认证 6…...

Google视觉机器人超级汇总:从RT、RT-2到AutoRT/SARA-RT/RT-Trajectory、RT-H

前言 随着对视觉语言机器人研究的深入&#xff0c;发现Google的工作很值得深挖&#xff0c;比如RT-2 ​想到很多工作都是站在Google的肩上做产品和应用&#xff0c;​Google真是科技进步的核心推动力&#xff0c;做了大量大模型的基础设施&#xff0c;服(推荐重点关注下Googl…...

LeetCode-1143. 最长公共子序列【字符串 动态规划】

LeetCode-1143. 最长公共子序列【字符串 动态规划】 题目描述&#xff1a;解题思路一&#xff1a;动规五部曲解题思路二&#xff1a;1维DP解题思路三&#xff1a;0 题目描述&#xff1a; 给定两个字符串 text1 和 text2&#xff0c;返回这两个字符串的最长 公共子序列 的长度。…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

服务器--宝塔命令

一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行&#xff01; sudo su - 1. CentOS 系统&#xff1a; yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)

macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 &#x1f37a; 最新版brew安装慢到怀疑人生&#xff1f;别怕&#xff0c;教你轻松起飞&#xff01; 最近Homebrew更新至最新版&#xff0c;每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

comfyui 工作流中 图生视频 如何增加视频的长度到5秒

comfyUI 工作流怎么可以生成更长的视频。除了硬件显存要求之外还有别的方法吗&#xff1f; 在ComfyUI中实现图生视频并延长到5秒&#xff0c;需要结合多个扩展和技巧。以下是完整解决方案&#xff1a; 核心工作流配置&#xff08;24fps下5秒120帧&#xff09; #mermaid-svg-yP…...

Visual Studio Code 扩展

Visual Studio Code 扩展 change-case 大小写转换EmmyLua for VSCode 调试插件Bookmarks 书签 change-case 大小写转换 https://marketplace.visualstudio.com/items?itemNamewmaurer.change-case 选中单词后&#xff0c;命令 changeCase.commands 可预览转换效果 EmmyLua…...

Java并发编程实战 Day 11:并发设计模式

【Java并发编程实战 Day 11】并发设计模式 开篇 这是"Java并发编程实战"系列的第11天&#xff0c;今天我们聚焦于并发设计模式。并发设计模式是解决多线程环境下常见问题的经典解决方案&#xff0c;它们不仅提供了优雅的设计思路&#xff0c;还能显著提升系统的性能…...

Linux基础开发工具——vim工具

文章目录 vim工具什么是vimvim的多模式和使用vim的基础模式vim的三种基础模式三种模式的初步了解 常用模式的详细讲解插入模式命令模式模式转化光标的移动文本的编辑 底行模式替换模式视图模式总结 使用vim的小技巧vim的配置(了解) vim工具 本文章仍然是继续讲解Linux系统下的…...