当前位置: 首页 > news >正文

深入探索自然语言处理:用Python和BERT构建文本分类模型

        在当今的信息时代,自然语言处理(NLP)技术正在改变我们理解和处理自然语言的方式。NLP使计算机能够解读、理解和生成人类语言,从而在多种应用中实现自动化,如聊天机器人、情感分析和文本分类。本文将详细介绍如何使用Python和BERT(Bidirectional Encoder Representations from Transformers)模型来构建一个高效的文本分类系统。

## 自然语言处理简介

自然语言处理是人工智能领域的一个重要分支,它涉及计算机和人类(自然)语言之间的交互。文本分类是NLP的一个常见任务,它的目的是将文本数据按照预定的分类标签进行分类。

## 开发环境设置

在开始之前,确保你的Python环境中已安装了以下库:

- TensorFlow:一个由Google开发的强大的机器学习库。
- Transformers:提供预训练模型如BERT进行NLP任务的库。

您可以使用pip命令安装这些库:

```bash
pip install tensorflow transformers
```

## 选择数据集

为了本教程,我们将使用“20 Newsgroups”数据集,这是一个用于文本分类的常见数据集,包含20个不同主题的新闻组文章。

## 加载和预处理数据

首先,我们需要加载数据集并进行必要的预处理,以适应BERT模型的输入要求。

```python
from transformers import BertTokenizer
from sklearn.datasets import fetch_20newsgroups

# 加载数据集
data = fetch_20newsgroups(subset='all')['data']

# 初始化BERT分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

# 分词处理
tokens = [tokenizer.encode(text, max_length=512, truncation=True, padding='max_length') for text in data]
```

## 构建模型

使用TensorFlow和Transformers库构建BERT模型。

```python
import tensorflow as tf
from transformers import TFBertModel

# 加载预训练的BERT模型
bert = TFBertModel.from_pretrained('bert-base-uncased')

# 构建用于文本分类的模型
input_ids = tf.keras.Input(shape=(512,), dtype='int32')
attention_masks = tf.keras.Input(shape=(512,), dtype='int32')

output = bert(input_ids, attention_mask=attention_masks)[1]
output = tf.keras.layers.Dense(20, activation='softmax')(output)

model = tf.keras.Model(inputs=[input_ids, attention_masks], outputs=output)
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
```

## 训练模型

准备输入数据并训练模型。

```python
import numpy as np

# 划分训练集和测试集
train_tokens, test_tokens, train_labels, test_labels = train_test_split(tokens, labels, test_size=0.1)

# 训练模型
model.fit([np.array(train_tokens), np.zeros_like(train_tokens)], np.array(train_labels), epochs=3, batch_size=8)

# 评估模型
model.evaluate([np.array(test_tokens), np.zeros_like(test_tokens)], np.array(test_labels))
```

## 结论

通过这个示例,我们展示了如何利用BERT和TensorFlow来构建一个强大的文本分类模型。这只是自然语言处理可以达到的浅层应用之一。随着模型和技术的不断进步,NLP的应用领域将持续扩展,为各行各业带来革命性的变革。不断学习和实验是掌握NLP技术的关键,期待每位读者都能在这一领域发光发热。

这篇教程不仅介绍了NLP的基础知识和BERT的应用,还通过实际代码示例指导了如何实现复

杂的NLP任务,帮助读者从理论走向实践,开启AI和机器学习的探索之旅。

相关文章:

深入探索自然语言处理:用Python和BERT构建文本分类模型

在当今的信息时代,自然语言处理(NLP)技术正在改变我们理解和处理自然语言的方式。NLP使计算机能够解读、理解和生成人类语言,从而在多种应用中实现自动化,如聊天机器人、情感分析和文本分类。本文将详细介绍如何使用Py…...

在Visual Studio Code中编辑React项目时,以下是一些推荐的扩展

ESLint:这个扩展可以集成ESLint到VS Code中,帮助你在编写代码时发现和修复JavaScript和TypeScript的语法错误和代码风格问题。 Prettier - Code formatter:Prettier是一个代码格式化工具,可以自动格式化你的代码以保持一致的代码…...

智算时代的基础设施如何实现可继承可演进?浪潮云海发布 InCloud OS V8 新一代架构平台

从 2023 年开始持续火爆的 AIGC 正在加速落地应用,为全行业带来生产生活效率的变革与升级。面对数字化转型与智能化转型,对于技术团队来说,既要根据业务与 AI 应用去部署以云为基础的 AI 算力,又要与已有数据和系统(甚…...

LDF、DBC、BIN、HEX、S19、BLF、ARXML、slx等

文章目录 如题 如题 LDF是LIN报文格式文件,把这个直接拖到软件里面,可以发报文和接收报文 DBC是CAN报文格式文件,把这个直接拖到软件里面,可以发报文和接收报文 BIN文件烧录在BOOT里面(stm32)&#xff0c…...

因为使用ArrayList.removeAll(List list)导致的机器重启

背景 先说一下背景,博主所在的业务组有一个核心系统,需要同步两个不同数据源给过来的数据到redis中,但是每次同步之前需要过滤掉一部分数据,只存储剩下的数据。每次同步的数据与需要过滤掉的数据量级大概在0-100w的数据不等。 由…...

Let‘s Encrypt

创建文件夹 mkdir /usr/local/develop/ 安装Certbot客户端 yum install certbot 首先确保example.com和www.example.com这两个域名通过DNS解析绑定了你的web 服务器的公网 IP 就是说先要完成域名解析到服务器 下面命令会验证 /var/www/example 他会将一些命令文件存在…...

C语言 | Leetcode C语言题解之第24题两两交换链表中的节点

题目: 题解: struct ListNode* swapPairs(struct ListNode* head) {struct ListNode dummyHead;dummyHead.next head;struct ListNode* temp &dummyHead;while (temp->next ! NULL && temp->next->next ! NULL) {struct ListNod…...

【LeetCode热题100】【回溯】电话号码的字母组合

题目链接:17. 电话号码的字母组合 - 力扣(LeetCode) 组合的过程是一个长树的过程,可以用深度遍历实现,每一个数字对应的字符串都是一层,一种字母组合就是一条路径,当递归的深度达到层数就找到了…...

解析mysql的DDL语句生成高斯内表及表字段主键配置

mysql的DDL语句如下: CREATE TABLE gg_zr (id bigint(20) NOT NULL COMMENT 责任信息表主键id,zrdm varchar(32) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci DEFAULT NULL COMMENT 责任代码,zrmc varchar(64) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci DEFAU…...

ANSYS Electromagnetics Suite 2023 R2 三维电磁(EM)仿真软件下载

Ansys家最新的三维电磁(EM)仿真软件ANSYS Electromagnetics Suite 2023 R2日前发布了,老wu这次分享得有点晚  ̄ω ̄,现在已经将资源上传到了网盘供大家免费下载,同时,为了让大家都能与…...

pbootcms百度推广链接打不开显示404错误页面

PbootCMS官方在2023年4月21日的版本更新中(对应V3.2.5版本),对URL参数添加了如下判断 if(stripos(URL,?) ! false && stripos(URL,/?tag) false && stripos(URL,/?page) false && stripos(URL,/?ext_) false…...

springboot 整合 swagger2

整合步骤 pom 添加依赖 <dependency><groupId>io.springfox</groupId><artifactId>springfox-swagger2</artifactId><version>2.9.2</version></dependency><dependency><groupId>io.springfox</groupId>&…...

redis-缓存穿透与雪崩

一&#xff0c;缓存穿透&#xff08;查不到&#xff09; 在默认情况下&#xff0c;用户请求数据时&#xff0c;会先在缓存(Redis)中查找&#xff0c;若没找到即缓存未命中&#xff0c;再在数据库中进行查找&#xff0c;数量少可能问题不大&#xff0c;可是一旦大量的请求数据&a…...

K8S临时存储-本地存储-PV和PVC的使用-动态存储(StorageClass)

介绍 容器中的文件在磁盘上是临时存放的&#xff0c;当容器崩溃或停止时容器上面的数据未保存&#xff0c; 因此在容器生命周期内创建或修改的所有文件都将丢失。 在崩溃期间&#xff0c;kubelet 会以干净的状态重新启动容器。 当多个容器在一个 Pod 中运行并且需要共享文件时…...

jeecg-boot安装

我看大家都挺关注&#xff0c;所以集中上传了下代码和相关工具&#xff0c;方便大家快速完成 链接&#xff1a;https://pan.baidu.com/s/1-Y9yHVZ-4DQFDjPBWUk4-A 提取码&#xff1a;op1r 1. 下载代码 下载地址 : JEECG官方网站 - 基于BPM的低代码开发平台(低代码平台_零代…...

Unity面经(自整)——移动开发与Shader

Unity与Android混合开发 为什么使用Flutter构建 Flutter 是 Google 的开源工具包&#xff0c;用于从单个代码库为移动、Web、桌面和嵌入式设备构建应用程序&#xff08;一套代码跨平台构建app是它最大的优点&#xff09;&#xff0c;并且可以构建高性能、稳定和丰富UI的应用程…...

Nginx实现反向代理、负载均衡、动静分离

1. 什么是Nginx的反向代理&#xff1f; Nginx的反向代理是指Nginx作为服务器的前端&#xff0c;接收客户端的请求&#xff0c;然后将请求转发给后端的真实服务器&#xff0c;并将真实服务器的响应返回给客户端。这种代理方式使得客户端并不知道真实服务器的存在&#xff0c;它…...

【Linux】网络基础(一)

文章目录 一、计算机网络背景1. 网络发展2. 认识“协议” 二、网络协议初识1. 协议分层2. OSI七层模型3. TCP/IP五层&#xff08;或四层&#xff09;模型 三、网络传输基本流程1. 同局域网的两台主机通信数据包封装和分用封装分用 2. 跨网络的两台主机通信 四、网络中的地址管理…...

前端小白学习Vue框架(二)

一.属性计算、属性监听、属性过滤 1.认识MVVM V &#xff08;用户视图界面&#xff09;通过VM (应用程序) 向Model(数据模型) 取值与赋值的过程&#xff01; 数据双向绑定 视图改变更新数据&#xff0c;数据改变更新视图 2.属性计算 //在vue实例中通过computed去计算new …...

飞书api增加权限

1&#xff0c;进入飞书开发者后台&#xff1a;飞书开放平台 给应用增加权限 2&#xff0c;进入飞书管理后台 https://fw5slkpbyb3.feishu.cn/admin/appCenter/audit 审核最新发布的版本 如果还是不行&#xff0c;则需要修改数据权限&#xff0c;修改为全部成员可修改。 改完…...

uniapp 对接腾讯云IM群组成员管理(增删改查)

UniApp 实战&#xff1a;腾讯云IM群组成员管理&#xff08;增删改查&#xff09; 一、前言 在社交类App开发中&#xff0c;群组成员管理是核心功能之一。本文将基于UniApp框架&#xff0c;结合腾讯云IM SDK&#xff0c;详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​&#xff1a; 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​&#xff1a; File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

windows系统MySQL安装文档

概览&#xff1a;本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容&#xff0c;为学习者提供全面的操作指导。关键要点包括&#xff1a; 解压 &#xff1a;下载完成后解压压缩包&#xff0c;得到MySQL 8.…...