深入探索自然语言处理:用Python和BERT构建文本分类模型
在当今的信息时代,自然语言处理(NLP)技术正在改变我们理解和处理自然语言的方式。NLP使计算机能够解读、理解和生成人类语言,从而在多种应用中实现自动化,如聊天机器人、情感分析和文本分类。本文将详细介绍如何使用Python和BERT(Bidirectional Encoder Representations from Transformers)模型来构建一个高效的文本分类系统。
## 自然语言处理简介
自然语言处理是人工智能领域的一个重要分支,它涉及计算机和人类(自然)语言之间的交互。文本分类是NLP的一个常见任务,它的目的是将文本数据按照预定的分类标签进行分类。
## 开发环境设置
在开始之前,确保你的Python环境中已安装了以下库:
- TensorFlow:一个由Google开发的强大的机器学习库。
- Transformers:提供预训练模型如BERT进行NLP任务的库。
您可以使用pip命令安装这些库:
```bash
pip install tensorflow transformers
```
## 选择数据集
为了本教程,我们将使用“20 Newsgroups”数据集,这是一个用于文本分类的常见数据集,包含20个不同主题的新闻组文章。
## 加载和预处理数据
首先,我们需要加载数据集并进行必要的预处理,以适应BERT模型的输入要求。
```python
from transformers import BertTokenizer
from sklearn.datasets import fetch_20newsgroups
# 加载数据集
data = fetch_20newsgroups(subset='all')['data']
# 初始化BERT分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
# 分词处理
tokens = [tokenizer.encode(text, max_length=512, truncation=True, padding='max_length') for text in data]
```
## 构建模型
使用TensorFlow和Transformers库构建BERT模型。
```python
import tensorflow as tf
from transformers import TFBertModel
# 加载预训练的BERT模型
bert = TFBertModel.from_pretrained('bert-base-uncased')
# 构建用于文本分类的模型
input_ids = tf.keras.Input(shape=(512,), dtype='int32')
attention_masks = tf.keras.Input(shape=(512,), dtype='int32')
output = bert(input_ids, attention_mask=attention_masks)[1]
output = tf.keras.layers.Dense(20, activation='softmax')(output)
model = tf.keras.Model(inputs=[input_ids, attention_masks], outputs=output)
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
```
## 训练模型
准备输入数据并训练模型。
```python
import numpy as np
# 划分训练集和测试集
train_tokens, test_tokens, train_labels, test_labels = train_test_split(tokens, labels, test_size=0.1)
# 训练模型
model.fit([np.array(train_tokens), np.zeros_like(train_tokens)], np.array(train_labels), epochs=3, batch_size=8)
# 评估模型
model.evaluate([np.array(test_tokens), np.zeros_like(test_tokens)], np.array(test_labels))
```
## 结论
通过这个示例,我们展示了如何利用BERT和TensorFlow来构建一个强大的文本分类模型。这只是自然语言处理可以达到的浅层应用之一。随着模型和技术的不断进步,NLP的应用领域将持续扩展,为各行各业带来革命性的变革。不断学习和实验是掌握NLP技术的关键,期待每位读者都能在这一领域发光发热。
这篇教程不仅介绍了NLP的基础知识和BERT的应用,还通过实际代码示例指导了如何实现复
杂的NLP任务,帮助读者从理论走向实践,开启AI和机器学习的探索之旅。
相关文章:
深入探索自然语言处理:用Python和BERT构建文本分类模型
在当今的信息时代,自然语言处理(NLP)技术正在改变我们理解和处理自然语言的方式。NLP使计算机能够解读、理解和生成人类语言,从而在多种应用中实现自动化,如聊天机器人、情感分析和文本分类。本文将详细介绍如何使用Py…...
在Visual Studio Code中编辑React项目时,以下是一些推荐的扩展
ESLint:这个扩展可以集成ESLint到VS Code中,帮助你在编写代码时发现和修复JavaScript和TypeScript的语法错误和代码风格问题。 Prettier - Code formatter:Prettier是一个代码格式化工具,可以自动格式化你的代码以保持一致的代码…...
智算时代的基础设施如何实现可继承可演进?浪潮云海发布 InCloud OS V8 新一代架构平台
从 2023 年开始持续火爆的 AIGC 正在加速落地应用,为全行业带来生产生活效率的变革与升级。面对数字化转型与智能化转型,对于技术团队来说,既要根据业务与 AI 应用去部署以云为基础的 AI 算力,又要与已有数据和系统(甚…...
LDF、DBC、BIN、HEX、S19、BLF、ARXML、slx等
文章目录 如题 如题 LDF是LIN报文格式文件,把这个直接拖到软件里面,可以发报文和接收报文 DBC是CAN报文格式文件,把这个直接拖到软件里面,可以发报文和接收报文 BIN文件烧录在BOOT里面(stm32),…...
因为使用ArrayList.removeAll(List list)导致的机器重启
背景 先说一下背景,博主所在的业务组有一个核心系统,需要同步两个不同数据源给过来的数据到redis中,但是每次同步之前需要过滤掉一部分数据,只存储剩下的数据。每次同步的数据与需要过滤掉的数据量级大概在0-100w的数据不等。 由…...
Let‘s Encrypt
创建文件夹 mkdir /usr/local/develop/ 安装Certbot客户端 yum install certbot 首先确保example.com和www.example.com这两个域名通过DNS解析绑定了你的web 服务器的公网 IP 就是说先要完成域名解析到服务器 下面命令会验证 /var/www/example 他会将一些命令文件存在…...
C语言 | Leetcode C语言题解之第24题两两交换链表中的节点
题目: 题解: struct ListNode* swapPairs(struct ListNode* head) {struct ListNode dummyHead;dummyHead.next head;struct ListNode* temp &dummyHead;while (temp->next ! NULL && temp->next->next ! NULL) {struct ListNod…...
【LeetCode热题100】【回溯】电话号码的字母组合
题目链接:17. 电话号码的字母组合 - 力扣(LeetCode) 组合的过程是一个长树的过程,可以用深度遍历实现,每一个数字对应的字符串都是一层,一种字母组合就是一条路径,当递归的深度达到层数就找到了…...
解析mysql的DDL语句生成高斯内表及表字段主键配置
mysql的DDL语句如下: CREATE TABLE gg_zr (id bigint(20) NOT NULL COMMENT 责任信息表主键id,zrdm varchar(32) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci DEFAULT NULL COMMENT 责任代码,zrmc varchar(64) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci DEFAU…...
ANSYS Electromagnetics Suite 2023 R2 三维电磁(EM)仿真软件下载
Ansys家最新的三维电磁(EM)仿真软件ANSYS Electromagnetics Suite 2023 R2日前发布了,老wu这次分享得有点晚  ̄ω ̄,现在已经将资源上传到了网盘供大家免费下载,同时,为了让大家都能与…...
pbootcms百度推广链接打不开显示404错误页面
PbootCMS官方在2023年4月21日的版本更新中(对应V3.2.5版本),对URL参数添加了如下判断 if(stripos(URL,?) ! false && stripos(URL,/?tag) false && stripos(URL,/?page) false && stripos(URL,/?ext_) false…...
springboot 整合 swagger2
整合步骤 pom 添加依赖 <dependency><groupId>io.springfox</groupId><artifactId>springfox-swagger2</artifactId><version>2.9.2</version></dependency><dependency><groupId>io.springfox</groupId>&…...
redis-缓存穿透与雪崩
一,缓存穿透(查不到) 在默认情况下,用户请求数据时,会先在缓存(Redis)中查找,若没找到即缓存未命中,再在数据库中进行查找,数量少可能问题不大,可是一旦大量的请求数据&a…...
K8S临时存储-本地存储-PV和PVC的使用-动态存储(StorageClass)
介绍 容器中的文件在磁盘上是临时存放的,当容器崩溃或停止时容器上面的数据未保存, 因此在容器生命周期内创建或修改的所有文件都将丢失。 在崩溃期间,kubelet 会以干净的状态重新启动容器。 当多个容器在一个 Pod 中运行并且需要共享文件时…...
jeecg-boot安装
我看大家都挺关注,所以集中上传了下代码和相关工具,方便大家快速完成 链接:https://pan.baidu.com/s/1-Y9yHVZ-4DQFDjPBWUk4-A 提取码:op1r 1. 下载代码 下载地址 : JEECG官方网站 - 基于BPM的低代码开发平台(低代码平台_零代…...
Unity面经(自整)——移动开发与Shader
Unity与Android混合开发 为什么使用Flutter构建 Flutter 是 Google 的开源工具包,用于从单个代码库为移动、Web、桌面和嵌入式设备构建应用程序(一套代码跨平台构建app是它最大的优点),并且可以构建高性能、稳定和丰富UI的应用程…...
Nginx实现反向代理、负载均衡、动静分离
1. 什么是Nginx的反向代理? Nginx的反向代理是指Nginx作为服务器的前端,接收客户端的请求,然后将请求转发给后端的真实服务器,并将真实服务器的响应返回给客户端。这种代理方式使得客户端并不知道真实服务器的存在,它…...
【Linux】网络基础(一)
文章目录 一、计算机网络背景1. 网络发展2. 认识“协议” 二、网络协议初识1. 协议分层2. OSI七层模型3. TCP/IP五层(或四层)模型 三、网络传输基本流程1. 同局域网的两台主机通信数据包封装和分用封装分用 2. 跨网络的两台主机通信 四、网络中的地址管理…...
前端小白学习Vue框架(二)
一.属性计算、属性监听、属性过滤 1.认识MVVM V (用户视图界面)通过VM (应用程序) 向Model(数据模型) 取值与赋值的过程! 数据双向绑定 视图改变更新数据,数据改变更新视图 2.属性计算 //在vue实例中通过computed去计算new …...
飞书api增加权限
1,进入飞书开发者后台:飞书开放平台 给应用增加权限 2,进入飞书管理后台 https://fw5slkpbyb3.feishu.cn/admin/appCenter/audit 审核最新发布的版本 如果还是不行,则需要修改数据权限,修改为全部成员可修改。 改完…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖
在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会࿰…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...
