当前位置: 首页 > news >正文

2024年MathorCup数模竞赛C题详解

C题持续更新中

  • 问题一
  • 问题二
  • 代码
    • 混合ARIMA-LSTM模型构建
    • 完整数据与代码
      • 第一问
      • 第二问

问题一

问题一要求对未来30天每天及每小时的货量进行预测。首先,利用混合ARIMA-LSTM模型进行时间序列预测。ARIMA模型擅长捕捉线性特征和趋势,而LSTM模型处理非线性关系和长期依赖。通过结合这两种模型,可以提高预测精度。具体步骤包括:

  1. 建立ARIMA模型,通过差分运算和ARMA模型组合来处理时间序列数据。
  2. 建立LSTM模型,利用其长短期记忆能力处理复杂的时间序列模式。
  3. 结合ARIMA和LSTM模型的预测结果,通过自适应混合算法调整权重,以提高预测准确性。
    在这里插入图片描述
    在这里插入图片描述

问题二

问题二要求在考虑运输线路改变的前提下,对未来30天每天及每小时的货量进行预测。解决方法涉及建立神经网络模型和聚类算法。具体步骤包括:

  1. 利用K-means算法对分拣中心的货量进行聚类,以理解不同类型货物的分布规律。
  2. 建立BP神经网络模型,通过特征选取和网络训练,预测货量变化。
  3. 基于聚类和BP神经网络的预测结果,分析运输线路变化对货量的影响,并通过回归图和折线图直观展示货量变化情况。在这里插入图片描述

代码

混合ARIMA-LSTM模型构建

clc
clear
close all;
load('appendix1.mat') %读入附件1
mape_record = [];
W_record = [];
pre_record = [];
for c=1:size(appendix1,2) % 遍历每一个分拣中心data = appendix1{1,c}; %将分拣中心另存出来train_num = 5; %用几期的值作为参考来训练权重%% 下面是ARIMA计算权重[y_train_ARIMA]=ARIMA(data(1:end-train_num,3),train_num); y_ture_ARIMA = data(end-train_num+1:end,3);wmape_ARIMA = sum(abs(y_train_ARIMA-y_ture_ARIMA)./y_ture_ARIMA);% 下面计算MAPEAPE_ARIMA = abs(y_ture_ARIMA - y_train_ARIMA) ./ abs(y_ture_ARIMA);  MAPE_ARIMA = mean(APE_ARIMA);%% 下面是LSTM计算权重ref = 30; %参考历史的多少期[y_train_LSTM]=LSTM(data(1:end-train_num,3),ref,train_num);y_ture_LSTM = data(end-train_num+1:end,3);wmape_LSTM = sum(abs(y_train_LSTM-y_ture_LSTM)./y_ture_LSTM);% 下面计算MAPEAPE_LSTM = abs(y_ture_LSTM - y_train_LSTM) ./ abs(y_ture_LSTM);  MAPE_LSTM = mean(APE_LSTM);%% 下面计算权重W_ARIMA = (1/wmape_ARIMA)/((1/wmape_ARIMA)+(1/wmape_LSTM));W_LSTM = 1-W_ARIMA;W_record(c,1) = data(1,1); %记录idW_record(c,2) = W_ARIMA; %记录ARIMAMAPEW_record(c,3) = W_LSTM; %记录LSTMMAPE%% 下面记录MAPEmape_record(c,1) = data(1,1); %记录idmape_record(c,2) = MAPE_ARIMA; %记录ARIMAMAPEmape_record(c,3) = MAPE_LSTM; %记录LSTMMAPE%% 下面正式预测pre_step = 30; %预测未来多少期的值% ARIMA[pre_ARIMA]=ARIMA(data(:,3),pre_step); % LSTM[pre_LSTM]=LSTM(data(:,3),ref,pre_step);% 混合pre = pre_ARIMA*W_ARIMA + pre_LSTM*W_LSTM;pre_record(1,c) = data(1,1); %记录idpre_record(2:1+pre_step,c) = pre; %记录预测值
end

完整数据与代码

第一问

在这里插入图片描述

第二问

在这里插入图片描述

完整资料获取,关注公众号云顶数模,或者直接点击下方咨询~

相关文章:

2024年MathorCup数模竞赛C题详解

C题持续更新中 问题一问题二代码混合ARIMA-LSTM模型构建完整数据与代码第一问第二问 问题一 问题一要求对未来30天每天及每小时的货量进行预测。首先,利用混合ARIMA-LSTM模型进行时间序列预测。ARIMA模型擅长捕捉线性特征和趋势,而LSTM模型处理非线性关…...

【简单讲解如何安装与配置Composer】

🎥博主:程序员不想YY啊 💫CSDN优质创作者,CSDN实力新星,CSDN博客专家 🤗点赞🎈收藏⭐再看💫养成习惯 ✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出…...

深入理解Apache ZooKeeper与Kafka的协同工作原理

目录 引言 一、ZooKeeper基础概念 (一)ZooKeeper简介 (二)ZooKeeper数据结构 (三)ZooKeeper特点 (四)应用场景 二、ZooKeeper工作模式 (一)工作机制 …...

js解密心得,记录一次抓包vue解密过程

背景 有个抓包结果被加密了 1、寻找入口,打断点 先正常请求一次,找到需要的请求接口。 寻找入口,需要重点关注几个关键字:new Promise 、new XMLHttpRequest、onreadystatechange、.interceptors.response.use、.interceptors.r…...

redis-哨兵模式

一,哨兵的作用: 通过发送命令,让Redis服务器返回监控其运行状态,包括主服务器和从服务器。当哨兵监测到master宕机,会自动将slave切换成master,然后通过发布订阅模式通知其他的从服务器,修改配…...

自动化测试中的SOLID原则

自动化测试在软件质量保障手段中愈显重要 。但是随着自动化测试代码的规模和复杂性不断扩大,它也很容易出现测试代码重复、紧耦合等问题。而SOLID原则可以解决这一问题,作为自动化用例开发的指导原则。 探索SOLID原则 SOLID原则是一组指导软件开发人员…...

tencentcloud-sdk-python-iotexplorer和tencent-iot-device有什么区别

1. tencent-iot-device tencent-iot-device 是腾讯云提供的物联网设备 SDK,用于在物联网场景中开发和连接设备。这个 SDK 提供了丰富的功能和接口,可以帮助开发者快速构建稳定、高效的物联网应用。 主要功能和特点: 设备连接管理&#xff1…...

Spring day1

day01_eesy_01jdbc pom.xml<packaging>jar</packaging> <dependencies><!-- https://mvnrepository.com/artifact/mysql/mysql-connector-java --><!--依赖--><dependency><groupId>mysql</groupId><artifactId>mysql-…...

设计模式: 行为型之中介者模式(18)

中介者模式概述 中介者模式&#xff08;Mediator Pattern&#xff09;是一种行为设计模式&#xff0c;它用于减少对象之间的直接交互&#xff0c;从而使其可以松散耦合中介者模式通过引入一个中介者对象来协调多个对象之间的交互&#xff0c;使得这些对象不需要知道彼此的具体…...

计算机网络的起源与发展历程

文章目录 前言时代背景ARPANET 的诞生TCP/IP 协议簇与 Internet 的诞生HTTP 协议与 Web 世界结语 前言 在当今数字化时代&#xff0c;计算机网络已经成为我们生活中不可或缺的一部分。无论是在家庭、学校、还是工作场所&#xff0c;我们都能感受到网络的巨大影响。随着互联网的…...

2024-4-12-实战:商城首页(下)

个人主页&#xff1a;学习前端的小z 个人专栏&#xff1a;HTML5和CSS3悦读 本专栏旨在分享记录每日学习的前端知识和学习笔记的归纳总结&#xff0c;欢迎大家在评论区交流讨论&#xff01; 文章目录 作业小结 作业 .bg-backward {width: 60px; height: 60px;background: url(..…...

一、flask入门和视图

run启动参数 模板渲染 后端给前端页面传参 前端页面设置css from flask import Flask, render_template,jsonify# 创建flask对象 app Flask(__name__)# 视图函数 路由route app.route("/") def hello_world():# 响应&#xff0c;返回给前端的数据return "h…...

Selenium+Chrome Driver 爬取搜狐页面信息

进行selenium包和chromedriver驱动的安装 安装selenium包 在命令行或者anaconda prompt 中输入 pip install Selenium 安装 chromedriver 先查看chrome浏览器的版本 这里是 123.0.6312.106 版 然后在http://npm.taobao.org/mirrors/chromedriver/或者https://googlechrom…...

SpringBoot:一个注解就能帮你下载任意对象

介绍 下载功能应该是比较常见的功能了&#xff0c;虽然一个项目里面可能出现的不多&#xff0c;但是基本上每个项目都会有&#xff0c;而且有些下载功能其实还是比较繁杂的&#xff0c;倒不是难&#xff0c;而是麻烦。 所以结合之前的下载需求&#xff0c;我写了一个库来简化…...

oracle全量、增量备份

采用0221222增量备份策略,7天一个轮回 也就是周日0级备份&#xff0c;周1 2 4 5 6 采用2级增量备份&#xff0c;周3采用1级增量备份 打开控制文件自动备份 CONFIGURE CONTROLFILE AUTOBACKUP ON; 配置控制文件备份路径 CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVI…...

React Router 5 vs 6:使用上的主要差异与升级指南

React Router 5 的一些API 在 React Router 6 上有时可能找不到&#xff0c;可能会看到如下画面&#xff1a;export ‘useHistory’ was not found in ‘react-router-dom’ … React Router目前有两个大的版本&#xff0c;即React Router 5、6。React Router 6 在设计上更加简…...

基于LNMP部署wordpress

目录 一.环境准备 二.配置源并安装 三.配置Nginx 四.配置数据库 五.上传源码并替换 六.打开浏览器&#xff0c;输入虚拟机ip访问安装部署 七.扩展增加主题 一.环境准备 centos7虚拟机 关闭防火墙和seliunx stop firewalld #关闭防火墙 setenforce 0 …...

openGauss_5.1.0 企业版快速安装及数据库连接:单节点容器化安装

目录 &#x1f4da;第一章 官网信息&#x1f4da;第二章 安装&#x1f4d7;下载源码&#x1f4d7;下载安装包&#x1f4d7;修改版本&#x1f4d7;解压安装包&#x1f4d7;运行buildDockerImage.sh脚本&#x1f4d7;docker操作&#x1f4d5;查看docker镜像&#x1f4d5;启动dock…...

微信小程序 uniapp+vue城市公交线路查询系统dtjl3

小程序Android端运行软件 微信开发者工具/hbuiderx uni-app框架&#xff1a;使用Vue.js开发跨平台应用的前端框架&#xff0c;编写一套代码&#xff0c;可编译到Android、小程序等平台。 前端&#xff1a;HTML5,CSS3 VUE 后端&#xff1a;java(springbootssm)/python(flaskdja…...

2024年MathorCup数模竞赛B题问题一二三+部分代码分享

inputFolderPath E:\oracle\images\; outputFolderPath E:\oracle\process\; % 获取文件夹中所有图片的文件列表 imageFiles dir(fullfile(inputFolderPath, *.jpg)); % 设置colorbar范围阈值 threshold 120; % 遍历每个图片文件 for i 1:length(imageFiles) % 读…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

手机平板能效生态设计指令EU 2023/1670标准解读

手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读&#xff0c;综合法规核心要求、最新修正及企业合规要点&#xff1a; 一、法规背景与目标 生效与强制时间 发布于2023年8月31日&#xff08;OJ公报&…...

Ubuntu Cursor升级成v1.0

0. 当前版本低 使用当前 Cursor v0.50时 GitHub Copilot Chat 打不开&#xff0c;快捷键也不好用&#xff0c;当看到 Cursor 升级后&#xff0c;还是蛮高兴的 1. 下载 Cursor 下载地址&#xff1a;https://www.cursor.com/cn/downloads 点击下载 Linux (x64) &#xff0c;…...

【Linux手册】探秘系统世界:从用户交互到硬件底层的全链路工作之旅

目录 前言 操作系统与驱动程序 是什么&#xff0c;为什么 怎么做 system call 用户操作接口 总结 前言 日常生活中&#xff0c;我们在使用电子设备时&#xff0c;我们所输入执行的每一条指令最终大多都会作用到硬件上&#xff0c;比如下载一款软件最终会下载到硬盘上&am…...

HTML前端开发:JavaScript 获取元素方法详解

作为前端开发者&#xff0c;高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法&#xff0c;分为两大系列&#xff1a; 一、getElementBy... 系列 传统方法&#xff0c;直接通过 DOM 接口访问&#xff0c;返回动态集合&#xff08;元素变化会实时更新&#xff09;。…...

[USACO23FEB] Bakery S

题目描述 Bessie 开了一家面包店! 在她的面包店里&#xff0c;Bessie 有一个烤箱&#xff0c;可以在 t C t_C tC​ 的时间内生产一块饼干或在 t M t_M tM​ 单位时间内生产一块松糕。 ( 1 ≤ t C , t M ≤ 10 9 ) (1 \le t_C,t_M \le 10^9) (1≤tC​,tM​≤109)。由于空间…...