Mysql主从复制安装配置
mysql主从复制安装配置
1、基础设置准备
#操作系统:
centos6.5
#mysql版本:
5.7
#两台虚拟机:
node1:192.168.85.111(主)
node2:192.168.85.112(从)
2、安装mysql数据库
#详细安装和卸载的步骤参考对应的文档
3、在两台数据库中分别创建数据库
--注意两台必须全部执行
create database msb;
4、在主(node1)服务器进行如下配置:
#修改配置文件,执行以下命令打开mysql配置文件
vi /etc/my.cnf
#在mysqld模块中添加如下配置信息
log-bin=master-bin #二进制文件名称
binlog-format=ROW #二进制日志格式,有row、statement、mixed三种格式,row指的是把改变的内容复制过去,而不是把命令在从服务器上执行一遍,statement指的是在主服务器上执行的SQL语句,在从服务器上执行同样的语句。MySQL默认采用基于语句的复制,效率比较高。mixed指的是默认采用基于语句的复制,一旦发现基于语句的无法精确的复制时,就会采用基于行的复制。
server-id=1 #要求各个服务器的id必须不一样
binlog-do-db=msb #同步的数据库名称
5、配置从服务器登录主服务器的账号授权
--授权操作
set global validate_password_policy=0;
set global validate_password_length=1;
grant replication slave on *.* to 'root'@'%' identified by '123456';
--刷新权限
flush privileges;
6、从服务器的配置
#修改配置文件,执行以下命令打开mysql配置文件
vi /etc/my.cnf
#在mysqld模块中添加如下配置信息
log-bin=master-bin #二进制文件的名称
binlog-format=ROW #二进制文件的格式
server-id=2 #服务器的id
7、重启主服务器的mysqld服务
#重启mysql服务
service mysqld restart
#登录mysql数据库
mysql -uroot -p
#查看master的状态
show master status;

8、重启从服务器并进行相关配置
#重启mysql服务
service mysqld restart
#登录mysql
mysql -uroot -p
#连接主服务器
change master to master_host='192.168.85.11',master_user='root',master_password='123456',master_port=3306,master_log_file='master-bin.000001',master_log_pos=154;
#启动slave
start slave
#查看slave的状态
show slave status\G(注意没有分号)
9、此时可以在主服务器进行相关的数据添加删除工作,在从服务器看相关的状态
相关文章:
Mysql主从复制安装配置
mysql主从复制安装配置 1、基础设置准备 #操作系统: centos6.5 #mysql版本: 5.7 #两台虚拟机: node1:192.168.85.111(主) node2:192.168.85.112(从)2、安装mysql数据库 #详细安装和卸载的步骤…...
【刷题】图论——最小生成树:Prim、Kruskal【模板】
假设有n个点m条边。 Prim适用于邻接矩阵存的稠密图,时间复杂度是 O ( n 2 ) O(n^2) O(n2),可用堆优化成 O ( n l o g n ) O(nlogn) O(nlogn)。 Kruskal适用于稀疏图,n个点m条边,时间复杂度是 m l o g ( m ) mlog(m) mlog(m)。 Pr…...
使用uniapp实现小程序获取wifi并连接
Wi-Fi功能模块 App平台由 uni ext api 实现,需下载插件:uni-WiFi 链接:https://ext.dcloud.net.cn/plugin?id10337 uni ext api 需 HBuilderX 3.6.8 iOS平台获取Wi-Fi信息需要开启“Access WiFi information”能力登录苹果开发者网站&…...
回忆杀之手搓当年搓过的Transformer
整体代码 import mathimport paddle import paddle.nn as nn import paddle.nn.functional as Fclass MaskMultiHeadAttention(nn.Layer):def __init__(self, hidden_size, num_heads):super(MaskMultiHeadAttention, self).__init__()assert hidden_size % num_heads 0, &qu…...
【AR】使用深度API实现虚实遮挡
遮挡效果 本段描述摘自 https://developers.google.cn/ar/develop/depth 遮挡是深度API的应用之一。 遮挡(即准确渲染虚拟物体在现实物体后面)对于沉浸式 AR 体验至关重要。 参考下图,假设场景中有一个Andy,用户可能需要放置在包含…...
python-pytorch实现skip-gram 0.5.001
python-pytorch实现skip-gram 0.5.000 数据加载、切词准备训练数据准备模型和参数训练保存模型加载模型简单预测获取词向量画一个词向量的分布图使用词向量计算相似度参考数据加载、切词 按照链接https://blog.csdn.net/m0_60688978/article/details/137538274操作后,可以获得…...
C语言:约瑟夫环问题详解
前言 哈喽,宝子们!本期为大家带来一道C语言循环链表的经典算法题(约瑟夫环)。 目录 1.什么是约瑟夫环2.解决方案思路3.创建链表头结点4.创建循环链表5.删除链表6.完整代码实现 1.什么是约瑟夫环 据说著名历史学家Josephus有过以下…...
【刷题篇】回溯算法(二)
文章目录 1、求根节点到叶节点数字之和2、二叉树剪枝3、验证二叉搜索树4、二叉搜索树中第K小的元素5、二叉树的所有路径 1、求根节点到叶节点数字之和 给你一个二叉树的根节点 root ,树中每个节点都存放有一个 0 到 9 之间的数字。 每条从根节点到叶节点的路径都代表…...
Windows系统本地部署Jupyter Notebook并实现公网访问编辑笔记
文章目录 1.前言2.Jupyter Notebook的安装2.1 Jupyter Notebook下载安装2.2 Jupyter Notebook的配置2.3 Cpolar下载安装 3.Cpolar端口设置3.1 Cpolar云端设置3.2.Cpolar本地设置 4.公网访问测试5.结语 1.前言 在数据分析工作中,使用最多的无疑就是各种函数、图表、…...
自动化运维(二十七)Ansible 实战Shell 插件和模块工具
Ansible 支持多种类型的插件,这些插件可以帮助你扩展和定制 Ansible 的功能。每种插件类型都有其特定的用途和应用场景。今天我们一起学习Shell 插件和模块工具。 一、 Shell 插件 Ansible shell 插件决定了 Ansible 如何在远程系统上执行命令。这些插件非常关键&a…...
Jenkins使用-绑定域控与用户授权
一、Jenkins安装完成后,企业中使用,首先需要绑定域控以方便管理。 操作方法: 1、备份配置文件,防止域控绑定错误或授权策略选择不对,造成没办法登录,或登录后没有权限操作。 [roottest jenkins]# mkdir ba…...
【前端】es-drager 图片同比缩放 缩放比 只修改宽 只修改高
【前端】es-drager 图片同比缩放 缩放比 ES Drager 拖拽组件 (vangleer.github.io) 核心代码 //初始宽 let width ref(108)//初始高 let height ref(72)//以下两个变量 用来区分是单独的修改宽 还是高 或者是同比 //缩放开始时的宽 let oldWidth 0 //缩放开始时的高 let o…...
蓝桥杯第十四届蓝桥杯大赛软件赛省赛C/C++ 大学 A 组题解
1.幸运数 题目链接:0幸运数 - 蓝桥云课 (lanqiao.cn) #include<bits/stdc.h> using namespace std; bool deng(string& num){int n num.size();int qian 0,hou 0;for(int i0;i<n/2;i) qian (num[i]-0);for(int in/2;i<n;i) hou (num[i]-0);r…...
eclipse .project
.project <?xml version"1.0" encoding"UTF-8"?> <projectDescription> <name>scrm-web</name> <comment></comment> <projects> </projects> <buildSpec> <buil…...
react的闭包陷阱
React 的闭包陷阱是指在使用 React Hooks 时,由于闭包特性导致在某些函数或异步操作中无法正确访问到更新后状态或 prop 的值,而仍旧使用了旧值。下面通过几个代码示例来具体说明闭包陷阱的几种常见情形: 示例 1: useState 闭包陷阱 import…...
神经网络解决回归问题(更新ing)
神经网络应用于回归问题 优势是什么???生成数据集:通用神经网络拟合函数调整不同参数对比结果初始代码结果调整神经网络结构调整激活函数调整迭代次数增加早停法变量归一化处理正则化系数调整学习率调整 总结ingfnn.py进行计算&am…...
【小红书校招场景题】12306抢票系统
1 坐过高铁吧,有抢过票吗。你说说抢票系统对于后端开发人员而言会有哪些情况? 对于后端开发人员来说,开发和维护一个高铁抢票系统(如中国的12306)会面临一系列的挑战和情况。这些挑战主要涉及系统的性能、稳定性、数据…...
Spring(三)
1. Spring单例Bean是不是线程安全的? Spring单例Bean默认并不是线程安全的。由于多个线程可能访问同一份Bean实例,当Bean的内部包含了可变状态(mutable state)即有可修改的成员变量时,就可能出现线程安全问题。Spring容器不会自动…...
使用element-plus中的表单验证
标签页代码如下: // 注意:el-form中的数据绑定不可以用v-model,要使用:model <el-form ref"ruleFormRef" :rules"rules" :model"userTemp" label-width"80px"><el-row :gutter"20&qu…...
flinksql
Flink SQL 是 Apache Flink 项目中的一个重要组成部分,它允许开发者使用标准的 SQL 语言来处理流数据和批处理数据。Flink SQL 提供了一种声明式的编程范式,使得用户能够以一种简洁、高效且易于理解的方式来表达复杂的数据处理逻辑。 ### 背景 Flink SQL 的设计初衷是为了简…...
大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...
智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
