当前位置: 首页 > news >正文

【opencv】示例-pca.cpp PCA图像重建演示

9d8824bc74e020f2f6f57fd81556519b.png

1e34152a1ccbb16d3ebe76f61c4db5f9.png

// 加载必要的头文件
#include <iostream> // 用于标准输入输出流
#include <fstream>  // 用于文件的输入输出
#include <sstream>  // 用于字符串的输入输出流操作#include <opencv2/core.hpp>          // OpenCV核心功能的头文件
#include "opencv2/imgcodecs.hpp"     // OpenCV图像编解码功能的头文件
#include <opencv2/highgui.hpp>       // OpenCV的高级GUI(图形用户界面)// 使用标准命名空间和OpenCV命名空间,避免重复声明
using namespace cv;
using namespace std;///
// 函数声明部分// read_imgList函数用于从文本文件中读取图像路径并加载这些图像
static void read_imgList(const string& filename, vector<Mat>& images) {std::ifstream file(filename.c_str(), ifstream::in); // 打开文件if (!file) {string error_message = "No valid input file was given, please check the given filename."; // 错误消息CV_Error(Error::StsBadArg, error_message); // 如果文件打开失败,给出错误信息并退出程序}string line; // 存储读取的每行文字while (getline(file, line)) {images.push_back(imread(line, IMREAD_GRAYSCALE)); // 将每行读取到的图像路径用于加载图像,并转换为灰度图像}
}// formatImagesForPCA函数用于将图像数据格式化为一个适合PCA处理的矩阵
static  Mat formatImagesForPCA(const vector<Mat> &data)
{// 创建一个用于PCA处理的矩阵,将所有图像行向量垂直堆叠Mat dst(static_cast<int>(data.size()), data[0].rows*data[0].cols, CV_32F);for(unsigned int i = 0; i < data.size(); i++) // 遍历所有图像{Mat image_row = data[i].clone().reshape(1,1); // 将每张图像转换为行向量Mat row_i = dst.row(i); // 获取目标矩阵的当前行image_row.convertTo(row_i,CV_32F); // 将图像数据转换为浮点型,并填入目标矩阵的相应行}return dst; // 返回格式化后的矩阵
}// toGrayscale函数用于将输入图像转换为灰度图像,并进行归一化处理
static Mat toGrayscale(InputArray _src) {Mat src = _src.getMat(); // 获取输入数据的Mat对象// 检查是否是单通道图像if(src.channels() != 1) {CV_Error(Error::StsBadArg, "Only Matrices with one channel are supported"); // 如果不是,抛出异常}// 创建一个目标Mat对象,并对输入图像进行归一化处理Mat dst;cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1);return dst; // 返回处理后的图像
}// 定义一个结构体用于传递给滑动条回调函数的参数
struct params
{Mat data;    // 存放数据的Mat矩阵int ch;      // 图像的通道数int rows;    // 图像行数PCA pca;     // PCA对象string winName; // 窗口名称
};// onTrackbar滑动条回调函数,用于根据Retained Variance(保留方差)的变化更新PCA结果并显示
static void onTrackbar(int pos, void* ptr)
{cout << "Retained Variance = " << pos << "%   ";cout << "re-calculating PCA..." << std::flush; // 提示正在重新计算PCAdouble var = pos / 100.0; // 将滑动条的整型位置值转换为[0,1]之间的百分比表示的保留方差struct params *p = (struct params *)ptr; // 从回调函数的指针参数中提取出params结构体// 使用新的保留方差重新计算PCAp->pca = PCA(p->data, cv::Mat(), PCA::DATA_AS_ROW, var); // 将原始数据的第一行(第一幅图像)投影到PCA空间,并获取其点representationMat point = p->pca.project(p->data.row(0));// 然后利用该点representation重构图像Mat reconstruction = p->pca.backProject(point);reconstruction = reconstruction.reshape(p->ch, p->rows); // 重构的图像需要重新改变其形状reconstruction = toGrayscale(reconstruction); // 转换为灰度图便于显示// 在窗口中显示重构的图像imshow(p->winName, reconstruction);// 打印PCA使用的主成分数量cout << "done!   # of principal components: " << p->pca.eigenvectors.rows << endl;
}///
// 主程序
int main(int argc, char** argv)
{// 解析命令行参数cv::CommandLineParser parser(argc, argv, "{@input||image list}{help h||show help message}");// 如果存在"help"参数,则打印帮助消息if (parser.has("help")){parser.printMessage();exit(0);}// 获取CSV文件的路径string imgList = parser.get<string>("@input");// 如果未传入图片列表,则打印消息并退出程序if (imgList.empty()){parser.printMessage();exit(1);}// 创建一个向量来存储图像vector<Mat> images;// 读取数据,如果失败则会抛出异常try {read_imgList(imgList, images);} catch (const cv::Exception& e) {cerr << "Error opening file \"" << imgList << "\". Reason: " << e.msg << endl;exit(1);}// 如果图片不足以进行此演示,则退出程序if(images.size() <= 1) {string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";CV_Error(Error::StsError, error_message);}// 将图像重排并堆叠成一个行矩阵Mat data = formatImagesForPCA(images);// 执行PCA// 这里trackbar初始设置为95%,这也是一个常见的保留方差值PCA pca(data, cv::Mat(), PCA::DATA_AS_ROW, 0.95); // 展示保留方差对第一张图片效果的演示Mat point = pca.project(data.row(0)); // 将图像投影到特征空间,图像变成了一个“点”Mat reconstruction = pca.backProject(point); // 从“点”中重建图像reconstruction = reconstruction.reshape(images[0].channels(), images[0].rows); // 重新将行向量变形为图像形状reconstruction = toGrayscale(reconstruction); // 重新缩放以便于显示// 初始化高层GUI窗口string winName = "Reconstruction | press 'q' to quit";namedWindow(winName, WINDOW_NORMAL);// 创建一个结构体以传递给trackbar处理函数params p;p.data = data;p.ch = images[0].channels();p.rows = images[0].rows;p.pca = pca;p.winName = winName;// 创建trackbarint pos = 95;createTrackbar("Retained Variance (%)", winName, &pos, 100, onTrackbar, (void*)&p);// 显示直到用户按下'q'键imshow(winName, reconstruction);char key = 0;while(key != 'q')key = (char)waitKey();return 0;
}

代码的主要功能是,通过用户输入一个包含图像全路径的文本文件,该文件的每一行都代表一张图片的路径。程序将会使用主成分分析(PCA)技术对这些图像进行处理,并通过OpenCV库完成。这一处理过程可以通过一个trackbar(滑动条)来动态调整保留方差的百分比,从而展现不同保留方差下图像重建的效果。程序界面会持续显示直到用户按下'q'键退出。这个代码示例建议使用AT&T人脸数据库的前15个人脸图片来演示。

deea6de5c56344233ef92d62c4895658.png

// Reshape and stack images into a rowMatrixMat data = formatImagesForPCA(images);// perform PCAPCA pca(data, cv::Mat(), PCA::DATA_AS_ROW, 0.95); // trackbar is initially set here, also this is a common value for retainedVariance// Demonstration of the effect of retainedVariance on the first imageMat point = pca.project(data.row(0)); // project into the eigenspace, thus the image becomes a "point"Mat reconstruction = pca.backProject(point); // re-create the image from the "point"reconstruction = reconstruction.reshape(images[0].channels(), images[0].rows); // reshape from a row vector into image shapereconstruction = toGrayscale(reconstruction); // re-scale for displaying purposes

969da80f26830e803bf8409ab8367148.png

56ebb477b87a3d2e5e4e3feb3a611741.png

imageslist.txt

https://www.kaggle.com/datasets/kasikrit/att-database-of-faces?resource=download  数据下载地址

200e34188f5960c69e20dff0b117cf6f.png

468fd6b3f463a29e18332000e54e5225.png

相关文章:

【opencv】示例-pca.cpp PCA图像重建演示

// 加载必要的头文件 #include <iostream> // 用于标准输入输出流 #include <fstream> // 用于文件的输入输出 #include <sstream> // 用于字符串的输入输出流操作#include <opencv2/core.hpp> // OpenCV核心功能的头文件 #include "o…...

C语言中的编译和链接

系列文章目录 文章目录 ​编辑 系列文章目录 文章目录 前言 一、 翻译环境和运行环境 二、 翻译环境 2.1 编译 2.1.1 预处理 2.1.2 编译 2.1.2.1 词法分析 : 2.1.2.2 语法分析 2.1.2.3 语义分析 2.1.3 汇编 2.2 链接 三、运行环境 前言 在我们平常的写代码时&#xff0c;我们很…...

如何将三方库集成到hap包中——通过IDE集成cmak构建方式的C/C++三方库

简介 cmake构建方式是开源三方库的主流构建方式。DevEco Studio目前以支持cmake的构建方式。本文将通过在IDE上适配cJSON三方库为例讲来解如何在IDE上集成cmake构建方式得三方库。 创建工程 在开发进行三方库适配以及napi接口开发前&#xff0c;我们需要创建一个三方库对应的…...

Towards Street-Level Client-Independent IP Geolocation(2011年)(第二部分)

被引次数:306 Wang Y, Burgener D, Flores M, et al. Towards {Street-Level}{Client-Independent}{IP} Geolocation[C]//8th USENIX Symposium on Networked Systems Design and Implementation (NSDI 11). 2011. 接着Towards Street-Level Client-Independent IP Geolocati…...

软件测试过程和测试生命周期

众所周知&#xff0c;软件生命周期包括&#xff0c;需求阶段、设计阶段、设计构建阶段、测试周期阶段、最后测试、实施阶段、最后运维和维护验收。每个阶段都需要在软件开发的生命周期中从前一阶段交付。需求转化为设计&#xff0c;设计转化为开发和开发成测试&#xff0c;经过…...

python-study-day1

ps&#xff1a;前言 可做毕设&#xff0c;html&#xff0c;web&#xff0c;app&#xff0c;小程序&#xff0c;bug修改&#xff0c;可加急 作者自述 作为一名前端开发工程师&#xff0c;这个大环境不好的情况下&#xff0c;我试过我前端接单子但是没有后端&#xff0c…...

【Apache2】彻底删除 Apache2 服务器

要彻底删除 Apache2 服务器&#xff0c;需要卸载 Apache2 软件包并删除其配置文件和数据文件。在 Ubuntu 上&#xff0c;可以按照以下步骤来完成&#xff1a; 停止 Apache2 服务&#xff1a; sudo systemctl stop apache2卸载 Apache2 软件包&#xff1a; sudo apt-get purge a…...

C#:成绩等级转换

任务描述 本关任务&#xff1a;给出一百分制成绩&#xff0c;要求输出成绩等级‘A’、‘B’、‘C’、‘D’、‘E’。 90分以上为A 80-89分为B 70-79分为C 60-69分为D 60分以下为E&#xff0c;如果输入数据不在0~100范围内&#xff0c;请输出一行&#xff1a;“Score is error!”…...

每日OJ题_01背包③_力扣494. 目标和(dp+滚动数组优化)

目录 力扣494. 目标和 问题解析 解析代码 滚动数组优化代码 力扣494. 目标和 494. 目标和 难度 中等 给你一个非负整数数组 nums 和一个整数 target 。 向数组中的每个整数前添加 或 - &#xff0c;然后串联起所有整数&#xff0c;可以构造一个 表达式 &#xff1a; …...

vue3+element plus图片预览点击按钮直接显示图片的预览形式

1 需求 直接上需求&#xff1a; 我想要直接点击下面这个“预览”按钮&#xff0c;然后呈现出预览图片的形式 ok&#xff0c;需求知道了&#xff0c;下面让我们来看看如何实现吧 ~ 2 实现 template部分 <el-buttontype"primary"size"small"click&qu…...

GAMS104 现代游戏引擎 2

渲染的难点可以分为一下三部分&#xff1a;如何计算入射光线、如何考虑材质以及如何实现全局光照。 渲染的难点之一在于阴影&#xff0c;或者说是光的可见性。如何做出合适的阴影效果远比想象中要难得多&#xff0c;在实践中往往需要通过大量的技巧才能实现符合人认知的阴影效…...

spring boot学习第十七篇:OAuth2概述及使用GitHub登录第三方网站

0. 导言 我们在浏览器上可以访问成百上千个网站&#xff0c;使用每个网站的服务一般都要先注册账号&#xff0c;那么我们为了更好地记忆&#xff0c;一般都会在多个网站使用相同的账号和密码进行注册。那么问题就来了&#xff0c;如果在你注册的网站中有某些个网站的系统设计不…...

基于springboot的电影评论网站系统源码数据库

基于springboot的电影评论网站系统源码数据库 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实施在技术上已逐步成熟。本文介绍了电影评论网站的开发全过程。通过分析电影评论网站管理的不足&#xff0c;创建了一个计算机管理电影评论网站的方案。文…...

javaScript手写专题——实现instanceof/call/apply/bind/new的过程/继承方式

目录 原型链相关 手写instanceof 实现一个_instance方法&#xff0c;判断对象obj是否是target的实例 测试 手写new的过程 实现一个myNew方法&#xff0c;接收一个构造函数以及构造函数的参数&#xff0c;返回构造函数创建的实例对象 测试myNew方法 手写类的继承 ES6&…...

C++11 新特性:tuple 元组

std::tuple是 C11 中引入的一个非常强大的类型&#xff0c;它允许将多个类型不同的值&#xff0c;组合成单一对象。 std::tuple非常适合用于那些需要返回多个值的场景&#xff0c;而且它的灵活性和通用性使得其成为现代 C 编程中不可或缺的一部分。下面&#xff0c;我们将探讨…...

最齐全,最简单的免费SSL证书获取方法——实现HTTPS访问

一&#xff1a;阿里云 优势&#xff1a;大平台&#xff0c;在站长中知名度最高&#xff0c;提供20张免费单域名SSL证书 缺点&#xff1a;数量有限&#xff0c;并且只有单域名证书&#xff0c;通配符以及多域名没有免费版本。并且提供的单域名证书只有三个月的期限。 二&#…...

c语言->贪吃蛇实战技巧结合EasyX简单实现页面管理(简单实现)

✅作者简介&#xff1a;大家好&#xff0c;我是橘橙黄又青&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;再无B&#xff5e;U&#xff5e;G-CSDN博客 1. 游戏背景 贪吃蛇是久负盛名的游戏&#xff0c;它也和俄罗斯⽅…...

C语言-详解内存函数

文章目录 1.memcpy使用和模拟实现1.1 memcpy函数的使用规则1.2 memcpy函数的使用1.2 模拟实现memcpy函数 2.memmove 函数的使用和模拟实现2.1 memmove 函数使用规则2.2 memmove函数的使用2.3 模拟实现memmove函数2.3.1 从后往前移2.3.2 从前往后移 2.4 算法实现2.4.1 从前往后移…...

【核心完整复现】基于目标级联法的微网群多主体分布式优化调度

1 主要内容 之前发布了华电学报的复现程序《基于目标级联法的微网群多主体分布式优化调度》&#xff0c;具体链接为【防骗版】基于目标级联法的微网群多主体分布式优化调度&#xff0c;虽然对模型及结果进行了复现&#xff0c;但是部分模型细节和参数并没有完全实现&#xff0…...

Mac下安装NVM,NVM安装Node(附带NPM)

1、理解NVM、node、NPM 什么是NVM&#xff1f; NVM: Node.js Version Manager&#xff0c;用来管理 node 的版本。 什么是 Node.js? Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境。 Node.js使用了一个事件驱动、非阻塞式I/O的模型&#xff08; Node.js的特性&…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

基于 TAPD 进行项目管理

起因 自己写了个小工具&#xff0c;仓库用的Github。之前在用markdown进行需求管理&#xff0c;现在随着功能的增加&#xff0c;感觉有点难以管理了&#xff0c;所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD&#xff0c;需要提供一个企业名新建一个项目&#…...

DBLP数据库是什么?

DBLP&#xff08;Digital Bibliography & Library Project&#xff09;Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高&#xff0c;数据库文献更新速度很快&#xff0c;很好地反映了国际计算机科学学术研…...

API网关Kong的鉴权与限流:高并发场景下的核心实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中&#xff0c;API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关&#xff0c;Kong凭借其插件化架构…...

Android写一个捕获全局异常的工具类

项目开发和实际运行过程中难免会遇到异常发生&#xff0c;系统提供了一个可以捕获全局异常的工具Uncaughtexceptionhandler&#xff0c;它是Thread的子类&#xff08;就是package java.lang;里线程的Thread&#xff09;。本文将利用它将设备信息、报错信息以及错误的发生时间都…...