当前位置: 首页 > news >正文

【核心完整复现】基于目标级联法的微网群多主体分布式优化调度

主要内容

之前发布了华电学报的复现程序《基于目标级联法的微网群多主体分布式优化调度》,具体链接为【防骗版】基于目标级联法的微网群多主体分布式优化调度,虽然对模型及结果进行了复现,但是部分模型细节和参数并没有完全实现,本次发布该程序的完整复现版本,主要实现的内容如下:

1.考虑多源异质分布式电源的出力随机性,增加风光出力的鲁棒约束;

2.完全复现基于目标级联法的分布式​求解流程;

3.参数基本完全按照文献所列​;

4.程序目标函数和约束条件和文献一致​。

  • 程序主要内容

建立微网群系统的两级递阶优化调度模型: 上层是微网群能量调度中心优化调度模型,下层是子微网优化调度模型,然后对所建递阶优化调度模型耦合性和分布性进行分析,采用一种新型的协同优化方法———目标级联法,实现上下层模型的解耦独立优化,以3微网为算例进行验证,证明方法的可行性。

  • 上层微网群模型

  • 下层微网模型

  • 模型流程图

部分程序

%最终迭代后结果图
figure;
wwz=max(gPpcc1,0);
wwf=min(gPpcc1,0);
yyf=[-x_P_ch1;wwf]';
bar(yyf,'
stack
');
hold on
yyz=[x_P_dis1;x_P_g1;PV1;x_c_ld1;wwz]'
;bar(yyz,'stack');
plot(Pload1+Pkk1,'r','LineWidth',1.5)
xlabel('时间/h');
ylabel('功率/MW');
title('微网1功率');
sy=legend('储能充电','接受微网群电功率','储能放电','柴油发电','光伏','负荷响应','供给其他微网','微网1负荷');
sy.NumColumns = 3;
figure;
wwz=max(gPpcc2,0);
wwf=min(gPpcc2,0);
yyf=[-x_P_ch2;wwf]';
bar(yyf,'
stack
');
hold on
yyz=[x_P_dis2;x_P_g2;PW2;x_c_ld2;wwz]'
;bar(yyz,'stack');
plot(Pload2+Pkk2,'r','LineWidth',1.5)
xlabel('时间/h');
ylabel('功率/MW');
title('微网2功率');
sy=legend('储能充电','接受微网群电功率','储能放电','柴油发电','风电','负荷响应','供给其他微网','微网2负荷');
sy.NumColumns = 3;
figure;
wwz=max(gPpcc3,0);
wwf=min(gPpcc3,0);
yyf=[-x_P_ch3;wwf]';
bar(yyf,'
stack
');
hold on
yyz=[x_P_dis3;sum(x_P_g3);PW3;PV3;x_c_ld3;wwz]'
;bar(yyz,'stack');
plot(Pload3+Pkk3,'r','LineWidth',1.5)
xlabel('时间/h');
ylabel('功率/MW');
title('微网3功率');
sy=legend('储能充电','接受微网群电功率','储能放电','柴油发电','风电','光伏','负荷响应','供给其他微网','微网3负荷');
sy.NumColumns = 3;
figure;
plot(pv13,'r-o','LineWidth',1)
hold on
plot(pw2,'b-*','LineWidth',1)
plot(pw3,'m-s','LineWidth',1)
legend('MG1/MG3光伏','MG2风电','MG3风电');
xlabel('预测时段/h');
ylabel('可再生能源预测出力/p.u.');
grid on
figure;
plot(ploadz,'r-o','LineWidth',1)
hold on
plot(pload1,'b-*','LineWidth',1)
plot(pload2,'m-s','LineWidth',1)
plot(pload3,'c-^','LineWidth',1)
legend('微网群负荷','子微网1负荷','子微网2负荷','子微网3负荷');
xlabel('预测时段/h');
ylabel('预测负荷功率/p.u.');
grid on
figure;
title_name = '独立优化模型惩罚项';
title(title_name);   %%关键
plot(faz,'b-o','LineWidth',1.5);
hold on
plot(fa1,'b-o','LineWidth',1.5);
plot(fa2,'r-*','LineWidth',1.5);
plot(fa3,'k-^','LineWidth',1.5);
xlabel('迭代次数');
ylabel('独立优化模型惩罚项/元');
grid on
figure;
title_name = '最大连接变量偏差';
title(title_name);   %%关键
plot(detamax,'m-o','LineWidth',1.5);
xlabel('迭代次数');
ylabel('最大连接变量偏差/kW');
grid on
figure;
title_name = '整体经济性';
title(title_name);   %%关键
plot(y4,'b-o','LineWidth',1.5);
xlabel('迭代次数');
ylabel('整体经济性/元');
grid on
figure;
subplot(311)
plot(gPpcc1c,'--','LineWidth',1.5)
hold on
plot(gPMGc(1,:),'-','LineWidth',1.5)
grid on
legend('下层连接变量值','上层连接变量值');
xlabel('迭代次数');
ylabel('子微网1联络功率');
% ylim([0 200]);
subplot(312)
plot(gPpcc2c,'--','LineWidth',1.5)
hold on
plot(gPMGc(2,:),'-','LineWidth',1.5)
grid on
xlabel('迭代次数');
ylabel('子微网2联络功率');
% ylim([0 500]);
subplot(313)
plot(gPpcc3c,'--','LineWidth',1.5)
hold on
plot(gPMGc(3,:),'-','LineWidth',1.5)
grid on
xlabel('迭代次数');
ylabel('子微网3联络功率');

程序结果

4 下载链接

相关文章:

【核心完整复现】基于目标级联法的微网群多主体分布式优化调度

1 主要内容 之前发布了华电学报的复现程序《基于目标级联法的微网群多主体分布式优化调度》,具体链接为【防骗版】基于目标级联法的微网群多主体分布式优化调度,虽然对模型及结果进行了复现,但是部分模型细节和参数并没有完全实现&#xff0…...

Mac下安装NVM,NVM安装Node(附带NPM)

1、理解NVM、node、NPM 什么是NVM? NVM: Node.js Version Manager,用来管理 node 的版本。 什么是 Node.js? Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境。 Node.js使用了一个事件驱动、非阻塞式I/O的模型( Node.js的特性&…...

java之变量的作用域

在java中,变量需要像其他编程语言中先定义,再使用。但并不是定义好就能用。需要对变量定义一个作用范围才能使用,这个作用范围称为作用域。 在java程序中,变量会定义在一个花括号内,花括号内的区域就是作用域。 比如…...

CentOS 7软件安装全攻略:YUM命令详解与实战

在CentOS 7中,软件安装主要依赖于其强大的包管理器——YUM(Yellowdog Updater Modified)。YUM可以自动解决软件包之间的依赖关系,使得软件的安装、更新和卸载变得简单而高效。本文将详细介绍CentOS 7中软件安装的相关命令、选项和…...

达梦关键字(如:XML,EXCHANGE,DOMAIN,link等)配置忽略

背景:在使用达梦数据库时,查询SQL中涉及XML,EXCHANGE,DOMAIN,link字段,在达梦中是关键字,SQL报关键词不能使用的错误。 解决办法: 配置达梦安装文件E:\MyJava\dmdbms\data\DAMENG\dm.ini 忽略这些关键词,…...

2024/4/11 直流电机调速/PWM

一、直流电机简介和PWM原理 直流电机是一种将电能转换为机械能的装置。一般的直流电机有两个电极,当电极正接时,电机正转,当电极反接时,电机反转 直流电机主要由永磁体(定子)、线圈(转子&…...

贝乐虎儿歌v6.8.0解锁高级版亲子学习儿歌

软件介绍 贝乐虎儿歌免费版app,出自乐擎网络的创意工坊,专为孩子们雕琢了一系列富含创意的动画儿歌内容。这款app通过贝乐虎兄弟的可爱形象,让孩子们在愉快的观看中接触到各种儿歌和故事。不仅如此,app还巧妙地将古诗、英语等学习…...

计算机网络技术-RIP、0SPF和BGP协议的工作原理和应用

目录 RIP (Routing Information Protocolv)路由信息协议OSPF(Open Shortest Path First) 开放式最短路径优先BGP( Border Gateway Protocol)边界网关协议 RIP (Routing Information Protocolv)路由信息协议 RIP协议 是 TCP/IP环境中开发的第一个路由选择…...

机器学习——自动驾驶

本章我们主要学习以下内容: 阅读自动驾驶论文采集数据根据论文搭建自动驾驶神经网络训练模型在仿真环境中进行自动驾驶 论文介绍 本文参考自2016年英伟达发表的论文《End to End Learning for Self-Driving Cars》 📎end2end.pdf...

Android 14 vold 分析(2)VolumeManager 和 NetlinkManger

3. VolumeManager::Instance() 和 VolumeManager::start() system/vold/VolumeManager.cpp 3.1 Instance()没啥好说的 非常简单 112 VolumeManager* VolumeManager::Instance() {113 if (!sInstance) sInstance new VolumeManager();114 return sInst…...

《黑马点评》Redis高并发项目实战笔记(上)P1~P45

P1 Redis企业实战课程介绍 P2 短信登录 导入黑马点评项目 首先在数据库连接下新建一个数据库hmdp,然后右键hmdp下的表,选择运行SQL文件,然后指定运行文件hmdp.sql即可(建议MySQL的版本在5.7及以上): 下面这…...

pytorch车牌识别

目录 使用pytorch库中CNN模型进行图像识别收集数据集定义CNN模型卷积层池化层全连接层 CNN模型代码使用模型 使用pytorch库中CNN模型进行图像识别 收集数据集 可以去找开源的数据集或者自己手做一个 最终整合成 类别分类的图片文件 定义CNN模型 卷积层 功能:提…...

【C++入门】内联函数、auto与基于范围的for循环

💞💞 前言 hello hello~ ,这里是大耳朵土土垚~💖💖 ,欢迎大家点赞🥳🥳关注💥💥收藏🌹🌹🌹 💥个人主页&#x…...

服务器停用,备份服务文件。

文章目录 引言I 文件备份1.1 数据库文件/证书1.2 redis1.3 nacosII JAVA流水线备份2.1 java构建2.2 镜像构建2.3 docker 部署2.4 子模块构建2.5 Dockerfile_prodIII VUE项目流水线备份3.1 Node.js 构建3.2 Dockerfile_prod...

基于Python的深度学习的中文情感分析系统(V2.0),附源码

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…...

使用Postman发送跨域请求实验

使用Postman发送跨域请求 1 跨域是什么?2 何为同源呢?3 跨域请求是如何被检测到的?4 Postman跨域请求测试4.1 后端准备4.2 测试用例4.2.1 后端未配置跨域请求(1) 前端不跨域(2)前端跨域 4.2.2 后端配置跨域信息(1&…...

4、jvm-垃圾收集算法与垃圾收集器

垃圾收集算法 分代收集理论 当前虚拟机的垃圾收集都采用分代收集算法,这种算法没有什么新的思想,只是根据对象存活周期的不同将内存分为几块。一般将java堆分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。 比如…...

[Excel]如何限制儲存格輸入格式? 以“字首為英文字母大寫,其餘為數字,共15碼“為範例

[Excel]如何限制儲存格輸入格式 需求: 當一個excel表格需要由多位使用者來輸入資料時,難免會出現資料輸入錯誤問題,尤其是料號,品號或是訂單號的長類型編碼。若是問題屬於輸入錯誤"資料"但格式未錯誤,則可能需要讓exce…...

错题记录-华为海思

华为 海思数字芯片 参考 :FPGA开发/数字IC笔试系列(5) 华为海思IC笔试解析 FPGA开发/数字IC笔试系列(6) 华为海思IC笔试解析 SystemVerilog Function与Task的区别 $readmemh与$readmemb这两个系统任务是用来从指定文件中读取数据到寄存器数组或者RAM、ROM中。除了…...

rspack 使用构建vue3脚手架

基于 Rust 的高性能 Web 构建工具。rspack 主要适配 webpack 生态,对于绝大多数 webpack 工具库都是支持的。 启动速度快;增量热更新快。兼容 webpack 生态;内置了 ts、jsx、css、css modules 等开箱即用。生产优化,tree shaking…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

生成 Git SSH 证书

🔑 1. ​​生成 SSH 密钥对​​ 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​: -t rsa&#x…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...

管理学院权限管理系统开发总结

文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

0x-3-Oracle 23 ai-sqlcl 25.1 集成安装-配置和优化

是不是受够了安装了oracle database之后sqlplus的简陋,无法删除无法上下翻页的苦恼。 可以安装readline和rlwrap插件的话,配置.bahs_profile后也能解决上下翻页这些,但是很多生产环境无法安装rpm包。 oracle提供了sqlcl免费许可&#xff0c…...

Vue 3 + WebSocket 实战:公司通知实时推送功能详解

📢 Vue 3 WebSocket 实战:公司通知实时推送功能详解 📌 收藏 点赞 关注,项目中要用到推送功能时就不怕找不到了! 实时通知是企业系统中常见的功能,比如:管理员发布通知后,所有用户…...

Python 高级应用10:在python 大型项目中 FastAPI 和 Django 的相互配合

无论是python,或者java 的大型项目中,都会涉及到 自身平台微服务之间的相互调用,以及和第三发平台的 接口对接,那在python 中是怎么实现的呢? 在 Python Web 开发中,FastAPI 和 Django 是两个重要但定位不…...