当前位置: 首页 > news >正文

基于torch的图像识别训练策略与常用模块

数据预处理部分:

  • 数据增强:torchvision中transforms模块自带功能,比较实用
  • 数据预处理:torchvision中transforms也帮我们实现好了,直接调用即可
  • DataLoader模块直接读取batch数据

网络模块设置:

  • 加载预训练模型,torchvision中有很多经典网络架构,调用起来十分方便,并且可以用人家训练好的权重参数来继续训练,也就是所谓的迁移学习
  • 需要注意的是别人训练好的任务跟咱们的可不是完全一样,需要把最后的head层改一改,一般也就是最后的全连接层,改成咱们自己的任务
  • 训练时可以全部重头训练,也可以只训练最后咱们任务的层,因为前几层都是做特征提取的,本质任务目标是一致的

网络模型保存与测试

  • 模型保存的时候可以带有选择性,例如在验证集中如果当前效果好则保存
  • 读取模型进行实际测试
data_transforms = {'train': transforms.Compose([transforms.Resize([96, 96]),transforms.RandomRotation(45),#随机旋转,-45到45度之间随机选transforms.CenterCrop(64),#从中心开始裁剪transforms.RandomHorizontalFlip(p=0.5),#随机水平翻转 选择一个概率概率transforms.RandomVerticalFlip(p=0.5),#随机垂直翻转transforms.ColorJitter(brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1),#参数1为亮度,参数2为对比度,参数3为饱和度,参数4为色相transforms.RandomGrayscale(p=0.025),#概率转换成灰度率,3通道就是R=G=Btransforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])#均值,标准差]),'valid': transforms.Compose([transforms.Resize([64, 64]),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
}

选择性的权重更新

def set_parameter_requires_grad(model, feature_extracting):if feature_extracting:for param in model.parameters():param.requires_grad = False

自定义修改模型输出层,以resnet18为例

def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):model_ft = models.resnet18(pretrained=use_pretrained)set_parameter_requires_grad(model_ft, feature_extract)num_ftrs = model_ft.fc.in_featuresmodel_ft.fc = nn.Linear(num_ftrs, 102)#类别数自己根据自己任务来input_size = 64#输入大小根据自己配置来return model_ft, input_size

训练权重 选择

model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)#GPU还是CPU计算
model_ft = model_ft.to(device)# 模型保存,名字自己起
filename='checkpoint.pth'# 是否训练所有层
params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:params_to_update = []for name,param in model_ft.named_parameters():if param.requires_grad == True:params_to_update.append(param)print("\t",name)
else:for name,param in model_ft.named_parameters():if param.requires_grad == True:print("\t",name)

基本训练代码

def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,filename='best.pt'):#咱们要算时间的since = time.time()#也要记录最好的那一次best_acc = 0#模型也得放到你的CPU或者GPUmodel.to(device)#训练过程中打印一堆损失和指标val_acc_history = []train_acc_history = []train_losses = []valid_losses = []#学习率LRs = [optimizer.param_groups[0]['lr']]#最好的那次模型,后续会变的,先初始化best_model_wts = copy.deepcopy(model.state_dict())#一个个epoch来遍历for epoch in range(num_epochs):print('Epoch {}/{}'.format(epoch, num_epochs - 1))print('-' * 10)# 训练和验证for phase in ['train', 'valid']:if phase == 'train':model.train()  # 训练else:model.eval()   # 验证running_loss = 0.0running_corrects = 0# 把数据都取个遍for inputs, labels in dataloaders[phase]:inputs = inputs.to(device)#放到你的CPU或GPUlabels = labels.to(device)# 清零optimizer.zero_grad()# 只有训练的时候计算和更新梯度outputs = model(inputs)loss = criterion(outputs, labels)_, preds = torch.max(outputs, 1)# 训练阶段更新权重if phase == 'train':loss.backward()optimizer.step()# 计算损失running_loss += loss.item() * inputs.size(0)#0表示batch那个维度running_corrects += torch.sum(preds == labels.data)#预测结果最大的和真实值是否一致epoch_loss = running_loss / len(dataloaders[phase].dataset)#算平均epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)time_elapsed = time.time() - since#一个epoch我浪费了多少时间print('Time elapsed {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))# 得到最好那次的模型if phase == 'valid' and epoch_acc > best_acc:best_acc = epoch_accbest_model_wts = copy.deepcopy(model.state_dict())state = {'state_dict': model.state_dict(),#字典里key就是各层的名字,值就是训练好的权重'best_acc': best_acc,'optimizer' : optimizer.state_dict(),}torch.save(state, filename)if phase == 'valid':val_acc_history.append(epoch_acc)valid_losses.append(epoch_loss)#scheduler.step(epoch_loss)#学习率衰减if phase == 'train':train_acc_history.append(epoch_acc)train_losses.append(epoch_loss)print('Optimizer learning rate : {:.7f}'.format(optimizer.param_groups[0]['lr']))LRs.append(optimizer.param_groups[0]['lr'])print()scheduler.step()#学习率衰减time_elapsed = time.time() - sinceprint('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))print('Best val Acc: {:4f}'.format(best_acc))# 训练完后用最好的一次当做模型最终的结果,等着一会测试model.load_state_dict(best_model_wts)return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs 

调用训练

model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer_ft, num_epochs=20)
def im_convert(tensor):""" 展示数据"""image = tensor.to("cpu").clone().detach()image = image.numpy().squeeze()image = image.transpose(1,2,0)image = image * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))image = image.clip(0, 1)return image

相关文章:

基于torch的图像识别训练策略与常用模块

数据预处理部分: 数据增强:torchvision中transforms模块自带功能,比较实用数据预处理:torchvision中transforms也帮我们实现好了,直接调用即可DataLoader模块直接读取batch数据 网络模块设置: 加载预训练…...

微信小程序制作圆形进度条

微信小程序制作圆形进度条 1. 建立文件夹 选择一个目录建立一个文件夹,比如 mycircle 吧,另外把对应 page 的相关文件都建立出来,包括 js,json,wxml 和 wxcc。 2. 开启元件属性 在 mycircle.json中开启 component 属…...

大模型(Large Models):探索人工智能领域的新边界

🌟文章目录 🌟大模型的定义与特点🌟模型架构🌟大模型的训练策略🌟大模型的优化方法🌟大模型的应用案例 随着人工智能技术的飞速发展,大模型(Large Models)成为了引领深度…...

缓存相关知识总结

一、缓存的作用和分类 缓存可以减少数据库的访问压力,提升整个网站的数据访问速度,改善数据库的写入性能。缓存可以分为两种: 缓存在应用服务器上的本地缓存:访问速度快,但受应用服务器内存限制 缓存在专门的分布式缓存…...

Mapmost Alpha:开启三维城市场景创作新纪元

🤵‍♂️ 个人主页:艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞&#x1f4…...

【大模型完全入门手册】——引言

博主作为一名大模型开发算法工程师,很希望能够将所学到的以及实践中感悟到的内容梳理成为书籍。作为先导,以专栏的形式先整理内容,后续进行不断更新完善。希望能够构建起从理论到实践的全流程体系。 助力更多的人了解大模型,接触大模型,一起感受AI的魅力! 在当今人工智能…...

在 Vue 3 中使用 Axios 发送 POST 请求

在 Vue 3 中使用 Axios 发送 POST 请求需要首先安装 Axios,然后在 Vue 组件或 Vuex 中使用它。以下是一个简单的安装和使用案例: 安装 Axios 你可以使用 npm 或 yarn 来安装 Axios: npm install axios # 或者 yarn add axios 使用 Axios…...

【LeetCode刷题记录】189. 轮转数组

189 轮转数组 给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。 示例 1: 输入: nums [1,2,3,4,5,6,7], k 3 输出: [5,6,7,1,2,3,4] 解释: 向右轮转 1 步: [7,1,2,3,4,5,6] 向右轮转 2 步: [6,7,1,2,3,4,5] 向右轮转 3 步: …...

1.open3d处理点云数据的常见方法

1. 点云的读取、可视化、保存 在这里是读取的点云的pcd文件,代码如下: import open3d as o3dif __name__ __main__:#1.点云读取point o3d.io.read_point_cloud("E:\daima\huawei\img\change2.pcd")print(">",point)#2.点云可视…...

https和http有什么区别,为什么要用https

HTTPS(Hypertext Transfer Protocol Secure)和HTTP(Hypertext Transfer Protocol)之间的主要区别在于安全性。 安全性: HTTP是一种明文传输协议,数据在客户端和服务器之间以明文形式传输,容易…...

微前端框架主流方案剖析

微前端架构是为了在解决单体应用在一个相对长的时间跨度下,由于参与的人员、团队的增多、变迁,从一个普通应用演变成一个巨石应用(Frontend Monolith)后,随之而来的应用不可维护的问题。这类问题在企业级 Web 应用中尤其常见。 微前端框架内的各个应用都支持独立开发部署、不…...

安卓逆向之-Xposed RPC

引言: 逆向为最终的协议,或者爬虫的作用。 有几种方式,比如直接能力强,搞成协议。 现在好多加密解密都写入到so ,所以可以使用unidbg 一个可以模拟器so 执行的环境的开源项目。RPC 调用,又分为Frida, 还有今天讲的Xposed RPC。 原理: Xposed 可以hook ,然后可以直接…...

【排序 贪心】3107. 使数组中位数等于 K 的最少操作数

算法可以发掘本质,如: 一,若干师傅和徒弟互有好感,有好感的师徒可以结对学习。师傅和徒弟都只能参加一个对子。如何让对子最多。 二,有无限多1X2和2X1的骨牌,某个棋盘若干格子坏了,如何在没有坏…...

预览pdf文件和Excel文件

开发的时候要一个可上传下载预览的静态页面以下是数据html <el-table v-loading"loading" :data"fileList" selection-change"handleSelectionChange"><el-table-column type"selection" width"55" align"ce…...

RT-thread线程间同步:事件集/消息队列/邮箱功能

一,事件集 1,事件集作用 事件集主要用于线程间的同步,与信号量不同,它的特点是可以实现一对多,多对多的同步。即一个线程与多个事件的关系可设置为:其中任意一个事件唤醒线程,或几个事件都到达后才唤醒线程进行后续的处理;同样事件也可以是多个线程同步多个事件。 2,…...

【机器学习】一文掌握机器学习十大分类算法(上)。

十大分类算法 1、引言2、分类算法总结2.1 逻辑回归2.1.1 核心原理2.1.2 算法公式2.1.3 代码实例 2.2 决策树2.2.1 核心原理2.2. 代码实例 2.3 随机森林2.3.1 核心原理2.3.2 代码实例 2.4 支持向量机2.4.1 核心原理2.4.2 算法公式2.4.3 代码实例 2.5 朴素贝叶斯2.5.1 核心原理2.…...

策略模式(知识点)——设计模式学习笔记

文章目录 0 概念1 使用场景2 优缺点2.1 优点2.2 缺点 3 实现方式4 和其他模式的区别5 具体例子实现5.1 实现代码 0 概念 定义&#xff1a;定义一个算法族&#xff0c;并分别封装起来。策略让算法的变化独立于它的客户&#xff08;这样就可在不修改上下文代码或其他策略的情况下…...

Python学习从0开始——专栏汇总

Python学习从0开始——000参考 一、推荐二、基础三、项目一 一、推荐 Hello World in Python - 这个项目列出了用Python实现的各种"Hello World"程序。 Python Tricks - 这个项目包含了Python中的高级技巧和技术。 Think Python - 这是一本教授Python的在线书籍&…...

【iOS ARKit】Web 网页中嵌入 AR Quick Look

在支持 ARKit 的设备上&#xff0c;iOS 12 及以上版本系统中的 Safari浏览器支持 AR Quick Look&#xff0c; 因此可以通过浏览器直接使用3D/AR 的方式展示 Web 页面中的模型文件&#xff0c;目前 Web 版本的AR Quick Look 支持USDZ 格式文件。苹果公司有一个自建的3D模型示例库…...

Java基础-知识点03(面试|学习)

Java基础-知识点03 String类String类的作用及特性String不可以改变的原因及好处String、StringBuilder、StringBuffer的区别String中的replace和replaceAll的区别字符串拼接使用还是使用StringbuilderString中的equal()与Object方法中equals()区别String a new String("a…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启&#xff0c;数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后&#xff0c;存在与用户组权限相关的问题。具体表现为&#xff0c;Oracle 实例的运行用户&#xff08;oracle&#xff09;和集…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

基于鸿蒙(HarmonyOS5)的打车小程序

1. 开发环境准备 安装DevEco Studio (鸿蒙官方IDE)配置HarmonyOS SDK申请开发者账号和必要的API密钥 2. 项目结构设计 ├── entry │ ├── src │ │ ├── main │ │ │ ├── ets │ │ │ │ ├── pages │ │ │ │ │ ├── H…...