基于torch的图像识别训练策略与常用模块
数据预处理部分:
- 数据增强:torchvision中transforms模块自带功能,比较实用
- 数据预处理:torchvision中transforms也帮我们实现好了,直接调用即可
- DataLoader模块直接读取batch数据
网络模块设置:
- 加载预训练模型,torchvision中有很多经典网络架构,调用起来十分方便,并且可以用人家训练好的权重参数来继续训练,也就是所谓的迁移学习
- 需要注意的是别人训练好的任务跟咱们的可不是完全一样,需要把最后的head层改一改,一般也就是最后的全连接层,改成咱们自己的任务
- 训练时可以全部重头训练,也可以只训练最后咱们任务的层,因为前几层都是做特征提取的,本质任务目标是一致的
网络模型保存与测试
- 模型保存的时候可以带有选择性,例如在验证集中如果当前效果好则保存
- 读取模型进行实际测试
data_transforms = {'train': transforms.Compose([transforms.Resize([96, 96]),transforms.RandomRotation(45),#随机旋转,-45到45度之间随机选transforms.CenterCrop(64),#从中心开始裁剪transforms.RandomHorizontalFlip(p=0.5),#随机水平翻转 选择一个概率概率transforms.RandomVerticalFlip(p=0.5),#随机垂直翻转transforms.ColorJitter(brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1),#参数1为亮度,参数2为对比度,参数3为饱和度,参数4为色相transforms.RandomGrayscale(p=0.025),#概率转换成灰度率,3通道就是R=G=Btransforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])#均值,标准差]),'valid': transforms.Compose([transforms.Resize([64, 64]),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
}
选择性的权重更新
def set_parameter_requires_grad(model, feature_extracting):if feature_extracting:for param in model.parameters():param.requires_grad = False
自定义修改模型输出层,以resnet18为例
def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):model_ft = models.resnet18(pretrained=use_pretrained)set_parameter_requires_grad(model_ft, feature_extract)num_ftrs = model_ft.fc.in_featuresmodel_ft.fc = nn.Linear(num_ftrs, 102)#类别数自己根据自己任务来input_size = 64#输入大小根据自己配置来return model_ft, input_size
训练权重 选择
model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)#GPU还是CPU计算
model_ft = model_ft.to(device)# 模型保存,名字自己起
filename='checkpoint.pth'# 是否训练所有层
params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:params_to_update = []for name,param in model_ft.named_parameters():if param.requires_grad == True:params_to_update.append(param)print("\t",name)
else:for name,param in model_ft.named_parameters():if param.requires_grad == True:print("\t",name)
基本训练代码
def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,filename='best.pt'):#咱们要算时间的since = time.time()#也要记录最好的那一次best_acc = 0#模型也得放到你的CPU或者GPUmodel.to(device)#训练过程中打印一堆损失和指标val_acc_history = []train_acc_history = []train_losses = []valid_losses = []#学习率LRs = [optimizer.param_groups[0]['lr']]#最好的那次模型,后续会变的,先初始化best_model_wts = copy.deepcopy(model.state_dict())#一个个epoch来遍历for epoch in range(num_epochs):print('Epoch {}/{}'.format(epoch, num_epochs - 1))print('-' * 10)# 训练和验证for phase in ['train', 'valid']:if phase == 'train':model.train() # 训练else:model.eval() # 验证running_loss = 0.0running_corrects = 0# 把数据都取个遍for inputs, labels in dataloaders[phase]:inputs = inputs.to(device)#放到你的CPU或GPUlabels = labels.to(device)# 清零optimizer.zero_grad()# 只有训练的时候计算和更新梯度outputs = model(inputs)loss = criterion(outputs, labels)_, preds = torch.max(outputs, 1)# 训练阶段更新权重if phase == 'train':loss.backward()optimizer.step()# 计算损失running_loss += loss.item() * inputs.size(0)#0表示batch那个维度running_corrects += torch.sum(preds == labels.data)#预测结果最大的和真实值是否一致epoch_loss = running_loss / len(dataloaders[phase].dataset)#算平均epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)time_elapsed = time.time() - since#一个epoch我浪费了多少时间print('Time elapsed {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))# 得到最好那次的模型if phase == 'valid' and epoch_acc > best_acc:best_acc = epoch_accbest_model_wts = copy.deepcopy(model.state_dict())state = {'state_dict': model.state_dict(),#字典里key就是各层的名字,值就是训练好的权重'best_acc': best_acc,'optimizer' : optimizer.state_dict(),}torch.save(state, filename)if phase == 'valid':val_acc_history.append(epoch_acc)valid_losses.append(epoch_loss)#scheduler.step(epoch_loss)#学习率衰减if phase == 'train':train_acc_history.append(epoch_acc)train_losses.append(epoch_loss)print('Optimizer learning rate : {:.7f}'.format(optimizer.param_groups[0]['lr']))LRs.append(optimizer.param_groups[0]['lr'])print()scheduler.step()#学习率衰减time_elapsed = time.time() - sinceprint('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))print('Best val Acc: {:4f}'.format(best_acc))# 训练完后用最好的一次当做模型最终的结果,等着一会测试model.load_state_dict(best_model_wts)return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs
调用训练
model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs = train_model(model_ft, dataloaders, criterion, optimizer_ft, num_epochs=20)
def im_convert(tensor):""" 展示数据"""image = tensor.to("cpu").clone().detach()image = image.numpy().squeeze()image = image.transpose(1,2,0)image = image * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))image = image.clip(0, 1)return image
相关文章:
基于torch的图像识别训练策略与常用模块
数据预处理部分: 数据增强:torchvision中transforms模块自带功能,比较实用数据预处理:torchvision中transforms也帮我们实现好了,直接调用即可DataLoader模块直接读取batch数据 网络模块设置: 加载预训练…...
微信小程序制作圆形进度条
微信小程序制作圆形进度条 1. 建立文件夹 选择一个目录建立一个文件夹,比如 mycircle 吧,另外把对应 page 的相关文件都建立出来,包括 js,json,wxml 和 wxcc。 2. 开启元件属性 在 mycircle.json中开启 component 属…...
大模型(Large Models):探索人工智能领域的新边界
🌟文章目录 🌟大模型的定义与特点🌟模型架构🌟大模型的训练策略🌟大模型的优化方法🌟大模型的应用案例 随着人工智能技术的飞速发展,大模型(Large Models)成为了引领深度…...
缓存相关知识总结
一、缓存的作用和分类 缓存可以减少数据库的访问压力,提升整个网站的数据访问速度,改善数据库的写入性能。缓存可以分为两种: 缓存在应用服务器上的本地缓存:访问速度快,但受应用服务器内存限制 缓存在专门的分布式缓存…...
Mapmost Alpha:开启三维城市场景创作新纪元
🤵♂️ 个人主页:艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞Ǵ…...
【大模型完全入门手册】——引言
博主作为一名大模型开发算法工程师,很希望能够将所学到的以及实践中感悟到的内容梳理成为书籍。作为先导,以专栏的形式先整理内容,后续进行不断更新完善。希望能够构建起从理论到实践的全流程体系。 助力更多的人了解大模型,接触大模型,一起感受AI的魅力! 在当今人工智能…...
在 Vue 3 中使用 Axios 发送 POST 请求
在 Vue 3 中使用 Axios 发送 POST 请求需要首先安装 Axios,然后在 Vue 组件或 Vuex 中使用它。以下是一个简单的安装和使用案例: 安装 Axios 你可以使用 npm 或 yarn 来安装 Axios: npm install axios # 或者 yarn add axios 使用 Axios…...
【LeetCode刷题记录】189. 轮转数组
189 轮转数组 给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。 示例 1: 输入: nums [1,2,3,4,5,6,7], k 3 输出: [5,6,7,1,2,3,4] 解释: 向右轮转 1 步: [7,1,2,3,4,5,6] 向右轮转 2 步: [6,7,1,2,3,4,5] 向右轮转 3 步: …...
1.open3d处理点云数据的常见方法
1. 点云的读取、可视化、保存 在这里是读取的点云的pcd文件,代码如下: import open3d as o3dif __name__ __main__:#1.点云读取point o3d.io.read_point_cloud("E:\daima\huawei\img\change2.pcd")print(">",point)#2.点云可视…...
https和http有什么区别,为什么要用https
HTTPS(Hypertext Transfer Protocol Secure)和HTTP(Hypertext Transfer Protocol)之间的主要区别在于安全性。 安全性: HTTP是一种明文传输协议,数据在客户端和服务器之间以明文形式传输,容易…...
微前端框架主流方案剖析
微前端架构是为了在解决单体应用在一个相对长的时间跨度下,由于参与的人员、团队的增多、变迁,从一个普通应用演变成一个巨石应用(Frontend Monolith)后,随之而来的应用不可维护的问题。这类问题在企业级 Web 应用中尤其常见。 微前端框架内的各个应用都支持独立开发部署、不…...
安卓逆向之-Xposed RPC
引言: 逆向为最终的协议,或者爬虫的作用。 有几种方式,比如直接能力强,搞成协议。 现在好多加密解密都写入到so ,所以可以使用unidbg 一个可以模拟器so 执行的环境的开源项目。RPC 调用,又分为Frida, 还有今天讲的Xposed RPC。 原理: Xposed 可以hook ,然后可以直接…...
【排序 贪心】3107. 使数组中位数等于 K 的最少操作数
算法可以发掘本质,如: 一,若干师傅和徒弟互有好感,有好感的师徒可以结对学习。师傅和徒弟都只能参加一个对子。如何让对子最多。 二,有无限多1X2和2X1的骨牌,某个棋盘若干格子坏了,如何在没有坏…...
预览pdf文件和Excel文件
开发的时候要一个可上传下载预览的静态页面以下是数据html <el-table v-loading"loading" :data"fileList" selection-change"handleSelectionChange"><el-table-column type"selection" width"55" align"ce…...
RT-thread线程间同步:事件集/消息队列/邮箱功能
一,事件集 1,事件集作用 事件集主要用于线程间的同步,与信号量不同,它的特点是可以实现一对多,多对多的同步。即一个线程与多个事件的关系可设置为:其中任意一个事件唤醒线程,或几个事件都到达后才唤醒线程进行后续的处理;同样事件也可以是多个线程同步多个事件。 2,…...
【机器学习】一文掌握机器学习十大分类算法(上)。
十大分类算法 1、引言2、分类算法总结2.1 逻辑回归2.1.1 核心原理2.1.2 算法公式2.1.3 代码实例 2.2 决策树2.2.1 核心原理2.2. 代码实例 2.3 随机森林2.3.1 核心原理2.3.2 代码实例 2.4 支持向量机2.4.1 核心原理2.4.2 算法公式2.4.3 代码实例 2.5 朴素贝叶斯2.5.1 核心原理2.…...
策略模式(知识点)——设计模式学习笔记
文章目录 0 概念1 使用场景2 优缺点2.1 优点2.2 缺点 3 实现方式4 和其他模式的区别5 具体例子实现5.1 实现代码 0 概念 定义:定义一个算法族,并分别封装起来。策略让算法的变化独立于它的客户(这样就可在不修改上下文代码或其他策略的情况下…...
Python学习从0开始——专栏汇总
Python学习从0开始——000参考 一、推荐二、基础三、项目一 一、推荐 Hello World in Python - 这个项目列出了用Python实现的各种"Hello World"程序。 Python Tricks - 这个项目包含了Python中的高级技巧和技术。 Think Python - 这是一本教授Python的在线书籍&…...
【iOS ARKit】Web 网页中嵌入 AR Quick Look
在支持 ARKit 的设备上,iOS 12 及以上版本系统中的 Safari浏览器支持 AR Quick Look, 因此可以通过浏览器直接使用3D/AR 的方式展示 Web 页面中的模型文件,目前 Web 版本的AR Quick Look 支持USDZ 格式文件。苹果公司有一个自建的3D模型示例库…...
Java基础-知识点03(面试|学习)
Java基础-知识点03 String类String类的作用及特性String不可以改变的原因及好处String、StringBuilder、StringBuffer的区别String中的replace和replaceAll的区别字符串拼接使用还是使用StringbuilderString中的equal()与Object方法中equals()区别String a new String("a…...
Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
GO协程(Goroutine)问题总结
在使用Go语言来编写代码时,遇到的一些问题总结一下 [参考文档]:https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现: 今天在看到这个教程的时候,在自己的电…...
在树莓派上添加音频输入设备的几种方法
在树莓派上添加音频输入设备可以通过以下步骤完成,具体方法取决于设备类型(如USB麦克风、3.5mm接口麦克风或HDMI音频输入)。以下是详细指南: 1. 连接音频输入设备 USB麦克风/声卡:直接插入树莓派的USB接口。3.5mm麦克…...
java高级——高阶函数、如何定义一个函数式接口类似stream流的filter
java高级——高阶函数、stream流 前情提要文章介绍一、函数伊始1.1 合格的函数1.2 有形的函数2. 函数对象2.1 函数对象——行为参数化2.2 函数对象——延迟执行 二、 函数编程语法1. 函数对象表现形式1.1 Lambda表达式1.2 方法引用(Math::max) 2 函数接口…...
Java后端检查空条件查询
通过抛出运行异常:throw new RuntimeException("请输入查询条件!");BranchWarehouseServiceImpl.java // 查询试剂交易(入库/出库)记录Overridepublic List<BranchWarehouseTransactions> queryForReagent(Branch…...
高分辨率图像合成归一化流扩展
大家读完觉得有帮助记得关注和点赞!!! 1 摘要 我们提出了STARFlow,一种基于归一化流的可扩展生成模型,它在高分辨率图像合成方面取得了强大的性能。STARFlow的主要构建块是Transformer自回归流(TARFlow&am…...
算法刷题-回溯
今天给大家分享的还是一道关于dfs回溯的问题,对于这类问题大家还是要多刷和总结,总体难度还是偏大。 对于回溯问题有几个关键点: 1.首先对于这类回溯可以节点可以随机选择的问题,要做mian函数中循环调用dfs(i&#x…...
第22节 Node.js JXcore 打包
Node.js是一个开放源代码、跨平台的、用于服务器端和网络应用的运行环境。 JXcore是一个支持多线程的 Node.js 发行版本,基本不需要对你现有的代码做任何改动就可以直接线程安全地以多线程运行。 本文主要介绍JXcore的打包功能。 JXcore 安装 下载JXcore安装包&a…...
数据挖掘是什么?数据挖掘技术有哪些?
目录 一、数据挖掘是什么 二、常见的数据挖掘技术 1. 关联规则挖掘 2. 分类算法 3. 聚类分析 4. 回归分析 三、数据挖掘的应用领域 1. 商业领域 2. 医疗领域 3. 金融领域 4. 其他领域 四、数据挖掘面临的挑战和未来趋势 1. 面临的挑战 2. 未来趋势 五、总结 数据…...
