当前位置: 首页 > news >正文

【JavaEE初阶系列】——网络编程 UDP客户端/服务器 程序实现

目录

🚩UDP和TCP之间的区别

🎈TCP是有连接的 UDP是无连接的

🎈TCP是可靠传输 UDP是不可靠传输

🎈TCP是面向字节流 UDP是面向数据报

 🎈TCP和UDP是全双工

👩🏻‍💻UDP的socket api使用

💻DatagramSocket API

💻DatagramSocket 方法

💻DatagramPacket API

💻InetSocketAddress API

🎓UDP客户端/服务器 通信程序实现

🔴服务器

📝接收客户端发来的请求,并且解析

📝根据请求返回响应

📝创建一个DatagramPacket类, 存入数据,并发送给客户端

📝打印日志

🔴客户端 


通过网络,让俩个主机之间进行通信,基于这样的通信来完成一定的功能。

进行网络编程的时候,需要操作系统给咱们提供一组api,通过这种api才能完成编程。

api可以认为是应用层和传输层之间交互的路径。socket api就相当于插座一样,通过这一套socket api可以完成不同软件之间,不同操作系统之间的通信。


传输层,提供的协议,主要有2个,TCP和UDP这俩个。TCP和UDP这俩个协议的特性(工作原理) 差异很大,导致,使用俩种协议进行网络编程,也存在一定差别,系统就分别提供俩种api。


🚩UDP和TCP之间的区别

🎈TCP是有连接的 UDP是无连接的

TCP是有连接的,UDP是无连接的。什么是有连接和无连接呢?此处的连接本质上就是建立连接的双方,各自保存对方的信息,俩台计算机建立连接,就是双方彼此保存了对方的关键信息。TCP要想通信,就需要先建立连接(所谓连接就是保存对方的信息),做完之后,才能后续通信。(如果A和B建立连接,但是B拒绝了,通信就无法完成了),UDP想要通信,就直接发送数据就行了,不需要建立连接,也就是不需要保存对方的信息。虽然UDP本身是不保存的,但是你调用的UDP的socket api的时候要把对方的位置啥的给传过去。后面再 实现TCP就需要在类里初始化IP地址和端口号传入构造方法中,而UDP不用。


🎈TCP是可靠传输 UDP是不可靠传输

TCP里面内置了可靠传输的机制,UDP没有。网络上进行通信,A发送给B消息,这个消息不可能做到100%发送到的,所以什么是可靠传输呢?可靠传输就是A发送给B发信息,消息是不是到达B这一方,A自己能感知到(A心里有数)进一步的,就可以再发送失败的时候采取一定的措施(尝试重传之类的)。而从不可靠传输到可靠传输都是需要付出一些代价的,比如可靠传输的机制比较复杂,传输效率低。

就像一个老中医生有资历给病人看病,看了一下就知道他有什么毛病,只是不说出来,老中医心里有数,然后就去拿药配方进行医治。


🎈TCP是面向字节流 UDP是面向数据报

字节流和文件操作里面的字节流是一个意思,所以我们再实现TCP客户端和服务器之间的通信的时候,就需要用到文件操作里面字节输入流和输出流。

  • TCP是和文件操作一样,以字节为单位来进行传输
  • UDP是按照数据报为单位,来进行传输的。UDP数据报是有严格的格式的。

 🎈TCP和UDP是全双工

  • 一个信道,允许双向通信,就是全双工
  • 一个信道,只能单向通信,就是半双工

代码中使用一个Socket对象,就可以发送数据也能接收数据。

半双工——单向通信

一个管子,只能一边吹气。

但是B 不能给A吹气 ,这就是所谓的单向通信——半双工

全双工——双向通信

一根网线,电流不是只能从一边流向另一边,咋能双向通信呢?

就比如一个道路,我们中间划一道黄线,双向行驶


👩🏻‍💻UDP的socket api使用

💻DatagramSocket API

DatagramSocket UDP Socket ,用于发送和接收 UDP 数据报。
DatagramSocket 构造方法:
方法签名方法说明
DatagramSocket()创建一个UDP数据报套接字的Socket,绑定到本机任意一个随机端口(一般用于客户端)
DatagramSocket(int port)创建一个UDP数据报套接字的Socket,绑定到本机指定的端口(一般用于服务器)

为什么服务器要指定端口呢?而客户端不同?

因为服务器是程序员决定的,知道哪些端口是可以用的,这是可控的,客户端是不可控的,每个用户电脑程序不一样,占用的端口也不一样,如果手动指定端口,会产生冲突。所以 客户端交给系统自动分配的。

 socket其实也是操作系统一个概念,本质上是一种特殊的文件,Socket就属于是把"网卡"这个设备,抽象成了文件了,往socket文件中写数据,就相当于通过网卡发送数据,从socket文件读数据,就相当于通过网卡接收数据。这就是网络通信和文件操作统一了。


💻DatagramSocket 方法

方法签名方法说明
void receive(DatagramPacket p)从此套接字接收数据报(如果没有接收到数据报,该方法就会阻塞等待)
void send(DatagramPacket p)从此套接字发送数据报包(不会阻塞等待,直接发送)
void close()关闭此数据报套接字

receive()和send()方法里面的参数其实是输出型参数,数据报是空的,然后进行填充,并返回。 


💻DatagramPacket API

DatagramPacket UDP Socket 发送和接收的数据报。
DatagramPacket 构造方法:
方法签名方法说明
DatagramPacket(byte[] buf,int length)构造一个DatagramPacket以用来接收数据报,接收的数据保存在字节数组(第一个参数buf)中,接收指定长度(第二个参数length)
DatagramPacket(byte[] buf,int offset,int length,SocketAddress address)构造一个DatagramPacket以用来发送数据报,发送的数据为字节数组(第一个参数buf)中,从0到指定长度(第二个参数length)。address指定目的主机的IP和端口号

 DatagramPacket 方法:

方法签名方法说明
InetAddress. getAddress()从接收的数据报中,获取发送端主机IP地址;或从发送的数据报中,获取接收端主机IP地址
int getPort()从接收的数据报中,获取发送端主机的端口号;或从发送的数据报中,获取接收端主机端口号

byte[] getData() 获取数据报中的数据

构造UDP发送的数据报时,需要传入socketAddress,该对象可以使用InetSocketAddress来创建。


💻InetSocketAddress API

InetSocketAddress SocketAddress 的子类 )构造方法:
方法签名方法说明
InetSocketAddress(InetAddress addr, int port)创建一个Socket地址,包含IP地址和端口号

🎓UDP客户端/服务器 通信程序实现

这个程序是没有什么业务逻辑,只是单纯的调用socket api .让客户端给服务器发送一个请求,请求就是一个从控制台输入的字符串,服务器收到字符串之后,也就会把这个字符串原封不动的返回客户端,客户端再显出来。——回显服务器(echo server)


🔴服务器

📝接收客户端发来的请求,并且解析

 public UdpEchoServer(int port) throws SocketException {socket=new DatagramSocket(port);//服务器需要指定端口}

服务器和客户端都需要创建Socket对象。

  • 服务器的socket一般要显示的指定一个端口号
  • 客户端的socket一般不能显式指定(不显示指定,此时系统会自动分配一个随机的端口)

//接收请求之前,我们需要开辟一个空间存储要求DatagramPacket requestSocket=new DatagramPacket(new byte[4096],4096);socket.receive(requestSocket);

DatagramPacket这个对象用来承载从网卡这边读到的数据,收到数据的时候,需要搞一个内存空间来保存这个数据,DatagramPacket内部不能自行分配内存空间,因此就需要程序员手动把孔吉纳创建好,交给DatagramPacket进行处理。

服务器一旦启动,就会立即执行到这里的receive方法,此时客户端的请求还没来,这种情况也是没有关系的,receive就会直接阻塞,就会一直阻塞到真正客户端把请求发过来为止。


 //由于接收到的请求是二进制,我们需要转换成字符串String request=new String(requestSocket.getData(),0,requestSocket.getLength());

这个getLength 得到的结果是否是上述的4096?这个结果是收到的数据的真实长度(取决于发送方这一次到底发送了多少数据。取这个区间内的字节,构成一个Stirng。


📝根据请求返回响应

 //2.根据请求返回响应String response=new String(request);
 public String  process(String request){return request;}

 这个步骤是一个服务器程序,最核心的步骤!咱们当时是echo server不涉及这些流程,也不必考虑响应怎么计算,只要请求过来,就把请求当作响应。


📝创建一个DatagramPacket类, 存入数据,并发送给客户端

 UDP是无连接的,UDP自身不会保存数据要发给谁,就需要每次发送的时候,重新指定,数据要发到哪里去。上述创建数据报是存入发来的请求。

    //3.创建一个DatagramPacket类, 存入数据,并发送给客户端//requestSocket.getSocketAddress() requestSocket里面包含客户端的IP地址和端口号DatagramPacket responsePacket=new DatagramPacket(response.getBytes(),0,response.getBytes().length,requestSocket.getSocketAddress());socket.send(responsePacket);

 构造这个数据报,需要指定数据内容,也指定一下数据报要发给谁。再网络传输的时候,肯定是要使用字节的。

  • 可以让response.getBytes().length改成response.length()嘛?不行的,本质上也是和字符集有关系的。如果你这个字符串里内容都是英文字符,此时字节和字符个数是一样的,如果包含中文就不一样的。
  • requestSocket.getSocketAddress()指定一下请求中的地址(数据从哪里来,我们就要到哪里去)包含IP地址和端口号

📝打印日志

//打印一个日志 打印 客户端IP 客户端端口 客户端内容  服务器内容System.out.printf("[%s:%d] %s,%s",responsePacket.getAddress(),responsePacket.getPort(),request,response);

package UDP;import java.io.IOException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.SocketException;public class UdpEchoServer {DatagramSocket socket=null;public UdpEchoServer(int port) throws SocketException {socket=new DatagramSocket(port);//服务器需要指定端口}public void start() throws IOException {System.out.println("服务器开始启动->");while (true){//1.接收客户端发来的请求,并且解析//接收请求之前,我们需要开辟一个空间存储要求DatagramPacket requestSocket=new DatagramPacket(new byte[4096],4096);//然后接收请求(如果客户端还没发来请求,就阻塞等待)socket.receive(requestSocket);//由于接收到的请求是二进制,我们需要转换成字符串String request=new String(requestSocket.getData(),0,requestSocket.getLength());//2.根据请求返回响应String response=new String(request);//3.创建一个DatagramPacket类, 存入数据,并发送给客户端//requestSocket.getSocketAddress() requestSocket里面包含客户端的IP地址和端口号DatagramPacket responsePacket=new DatagramPacket(response.getBytes(),0,response.getBytes().length,requestSocket.getSocketAddress());socket.send(responsePacket);//打印一个日志 打印 客户端IP 客户端端口 客户端内容  服务器内容System.out.printf("[IP地址:%s 端口号:%d] request=%s response=%s",responsePacket.getAddress(),responsePacket.getPort(),request,response);}}public String  process(String request){return request;}public static void main(String[] args) throws IOException {UdpEchoServer udpEchoServer=new UdpEchoServer(9090);udpEchoServer.start();}
}

🔴客户端

客户端做的事情就是 发出请求,尝试得到服务器返回的响应

  • 1.将输入的字符串转换成请求,并发送给服务器
  • 2.发出请求之后,我们就要创建一个数据报,存储由服务器返回的请求,尝试返回请求
  • 3.将响应转换成字符串,并响应出来
package UDP;import java.io.IOException;
import java.net.*;
import java.util.Scanner;public class UDPClient {DatagramSocket socket=null;String serverIp="";int serverPort=0;public UDPClient(String serverIp, int serverPort) throws SocketException {socket = new DatagramSocket();this.serverIp = serverIp;this.serverPort = serverPort;}public void start() throws IOException {System.out.println("客户端开始启动");Scanner scanner=new Scanner(System.in);while (true){//1.将输入的字符串转换成请求,并发送给服务器String request=scanner.next();DatagramPacket requestPacket=new DatagramPacket(request.getBytes(),request.getBytes().length, InetAddress.getByName(serverIp),serverPort);socket.send(requestPacket);//2.尝试返回服务器的响应DatagramPacket responsePacket=new DatagramPacket(new byte[4096],4096);socket.receive(responsePacket);//3.将响应转换成字符串,并响应出来String response=new String(responsePacket.getData(),0,responsePacket.getLength());System.out.println(response);}}public static void main(String[] args) throws IOException {UDPClient udpClient=new UDPClient( "10.41.90.105",9090);udpClient.start();}
}

🔴服务器/客户端通信流程 


我们写完UDP的服务器和客户端的代码之后,为什么不close?就是关闭数据报套接字

socket也是文件,不关闭就会出问题了,就会出现文件资源泄漏嘛?(资源泄漏就是代码中频繁的打卡文件,但是不关闭,在一个进程的运行过程中,不断积累打开的文件,逐渐消耗掉文件描述符表里的内容,最终就消耗没了,如果进程的生命周期很短,打开一下没多久就关闭了,谈不上泄漏)

socket是文件描述符表中的一个表项,每次打开一个文件,就要占用一个位置。文件描述符,是在pdb上的。(跟随进程的)

这个socket在整个程序运行过程中都是需要使用的(不能提前关闭)当socket不需要使用的时候,意味着程序就要结束了,进程结束,此时随之文件描述符就会销毁了(pcb都销毁了)。随着销毁的过程,被系统自动回收了。

先启动服务器,再启动客户端

 


🍭 基于echo server写一个翻译服务器 

请求的是一个英文单词,响应就会返回对应的中文翻译。

cat——》小猫

dog——》小狗

通过代码来实现


public class UdpDicServer extends UdpEchoServer {private Map<String,String> dict=new HashMap<>();public UdpDicServer(int port) throws SocketException {super(port);}
}

用哈希表 来记录键值对,key是英文单词,value是英文单词的翻译,构成了键值对。

然后我们继承了服务器的类,我们要先调用他的构造方法。然后进行初始化。

package UDP;import javax.rmi.CORBA.Util;
import java.io.IOException;
import java.net.SocketException;
import java.util.HashMap;
import java.util.Map;public class UdpDicServer extends UdpEchoServer {private Map<String,String> dict=new HashMap<>();public UdpDicServer(int port) throws SocketException {super(port);//此时往这个表中插入几千几万个英文单词dict.put("cat","猫");dict.put("dog","狗");dict.put("flower","花");}//重写process方法,再重写的方法中完成翻译的过程//翻译的本质是“查表"public String  process(String request){return dict.getOrDefault(request,"该词在该词典中不存在");}public static void main(String[] args) throws IOException {UdpDicServer server=new UdpDicServer(9090);server.start();}
}

start方法中,调用process方法,this.process。

当前是子类引用调用start,this就是指向子类引用,虽然this是父类的类型,但是实际指向的是子类引用,调用process自然就会执行到子类的方法中, 上述重写了process方法,就可以在子类中组织你想要的”业务逻辑“。


只要跑得足够久,所有的雨都是阵雨。 

相关文章:

【JavaEE初阶系列】——网络编程 UDP客户端/服务器 程序实现

目录 &#x1f6a9;UDP和TCP之间的区别 &#x1f388;TCP是有连接的 UDP是无连接的 &#x1f388;TCP是可靠传输 UDP是不可靠传输 &#x1f388;TCP是面向字节流 UDP是面向数据报 &#x1f388;TCP和UDP是全双工 &#x1f469;&#x1f3fb;‍&#x1f4bb;UDP的socket ap…...

数据结构复习指导之绪论(算法的概念以及效率的度量)

文章目录 绪论&#xff1a; 2.算法和算法评价 知识总览 2.1算法的基本概念 知识点回顾与重要考点 2.2算法效率的度量 知识总览 1.时间复杂度 2.空间复杂度 知识点回顾与重要考点 归纳总结 绪论&#xff1a; 2.算法和算法评价 知识总览 2.1算法的基本概念 算法( Al…...

C语言经典例题(23)

1.求n的阶乘。(不考虑溢出) #include <stdio.h>int fac(int n);int main() {int n 0;scanf("%d", &n);int sum fac(n);printf("%d", sum);return 0; }int fac(int n) {if (n > 1){return n * fac(n - 1);}elsereturn 1; }2.求第n个斐波那契…...

Gitea的简单介绍

Gitea 是一个自由、开源、轻量级的 Git 服务程序。它是为了建立一个易于使用的、类似 GitHub 的 Git 服务而创建的。Gitea 采用 Go 语言编写,具有简单、快速、易于安装和配置的特点。 Gitea 提供了一个基本的 Web 界面,可以方便地进行代码托管、问题跟踪、协作等操作。用户可…...

Qt信号与槽

我们在使用Qt的时候&#xff0c;不使用Qt Designer 的方式进行开发&#xff0c;使用ui文件&#xff0c;信号与槽的连接方式是生成代码之后才能在setupUi函数里才能看到&#xff0c;或者需要进入Ui设计器里的信号槽模式里才能看到信号槽的连接。所以我们最好使用代码绘制界面。 …...

QQ农场-phpYeFarm添加数据教程

前置知识 plugin\qqfarm\core\data D:\study-project\testweb\upload\source\plugin\qqfarm\core\data 也就是plugin\qqfarm\core\data是一个缓存文件,如果更新农场数据后,必须要删除才可以 解决种子限制(必须要做才可以添加成功) 你不更改加入了id大于2000直接删除种子 D…...

Java中创建多线程的方法

继承Thread类&#xff0c;对该类进行new一个实例&#xff0c;对实例调用start方法&#xff0c;重写run方法。 缺点&#xff1a;单继承&#xff0c;无法继承 public class myThread extends Thread {public static void main(String[] args) {myThread myThread new myThread()…...

MT3020 任务分配

思路&#xff1a;利用二分找到某个时间是满足“k个人可以完成” &#xff0c;并且时间最小。 因为尽量让后面的人做任务&#xff0c;所以从后往前排任务&#xff08;倒着分配&#xff09;。从后往前遍历任务&#xff0c;如果此人加上这个任务超出之前求得的时间&#xff0c;就…...

【Redis】事务

Redis事务是一组命令的集合。这组命令顺序化执行而不会被其他命令插入。 Redis事务命令 命令描述DISCARD取消事务&#xff0c;放弃执行EXEC执行事务MULTI标记事务的开始UNWATCH取消WATCH对所有key的监控WATCH监控所有key Redis事务特点 特点说明单独的隔离操作Redis命令执行…...

每日一题(leetcode238):除自身以外数组的乘积--前缀和

不进阶是创建两个数组&#xff1a; class Solution { public:vector<int> productExceptSelf(vector<int>& nums) {int nnums.size();vector<int> left(n);vector<int> right(n);int mul1;for(int i0;i<n;i){mul*nums[i];left[i]mul;}mul1;for…...

内网通如何去除广告,内网通免广告生成器

公司使用内网通内部传输确实方便&#xff01;但是会有广告弹窗推送&#xff01;这个很烦恼&#xff01;那么如何去除广告呢&#xff01; 下载&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1CVVdWexliF3tBaFgN1W9aw?pwdhk7m 提取码&#xff1a;hk7m ID&#xff1a;…...

视频知识整理

1 视频播放器原理 视频播放器播放一个互联网上的视频文件&#xff0c;需要经过以下几个步骤&#xff1a; 解协议&#xff1a;将流媒体协议的数据&#xff0c;解析为标准的相应的封装格式数据 解封装&#xff1a;将封装格式的数据&#xff0c;分离成为音频流压缩编码数据和视…...

【2024】使用Rancher管理k8s集群和创建k8s集群

Rancher管理k8s集群及创建k8s集群。 Rancher版本为:2.8.2目录 rancher管理k8s集群rancher创建k8s集群rancher管理k8s集群 使用rancher管理已经存在的k8s集群。 本部分内容需要自行准备好k8s集群及rancher平台,部署请看本人其他文章 。 登录到rancher平台后,点击集群管理,…...

生成对抗网络 – Generative Adversarial Networks | GAN

目录 生成对抗网络 GAN 的基本原理 非大白话版本 第一阶段:固定「判别器D」,训练「生成器G」...

基于深度学习的生活垃圾智能分类系统(微信小程序+YOLOv5+训练数据集+开题报告+中期检查+论文)

摘要 本文基于Python技术&#xff0c;搭建了YOLOv5s深度学习模型&#xff0c;并基于该模型研发了微信小程序的垃圾分类应用系统。本项目的主要工作如下&#xff1a; &#xff08;1&#xff09;调研了移动端垃圾分类应用软件动态&#xff0c;并分析其优劣势&#xff1b;分析了深…...

软件包名生成参考

服务名称-分支名称-最后提交时间(精确到秒)-最后提交-编译时间(unix时间戳) 示例&#xff1a;crm_5.2_221024-221020160306-b846f829-1665655859 包名生成脚本参考&#xff1a; 分支名称 export GIT_BRANCH$(git branch|grep "\*"|head -n1|awk {print $NF})git最…...

八大排序算法(面试被问到)

1.八大排序算法都是什么&#xff1f; 八大排序算法有&#xff1a;插入排序、冒泡排序、归并排序、选择排序、快速排序、希尔排序、堆排序、基数排序&#xff08;通常不提&#xff09;。此外&#xff0c;还可以直接调用Arrays.sort()进行排序。 2.八大排序算法时间复杂度和稳定…...

SCP指令详细使用介绍

SCP&#xff08;Secure Copy Protocol&#xff09;是一种用于在计算机之间安全地传输文件的协议。它通过加密的方式在网络上安全地复制文件。SCP基于SSH&#xff08;Secure Shell&#xff09;协议&#xff0c;因此它提供了加密的连接和身份验证&#xff0c;确保数据在传输过程中…...

《前端面试题》- JS基础 - 防抖和节流

在界面触发点击&#xff0c;滚动&#xff0c;输入校验等事件时&#xff0c;如果对事件的触发频率不加以限制&#xff0c;会给浏览器增加负担&#xff0c;且对用户不友好。防抖和节流就是针对类似情况的解决方案。 防抖 防抖(debounce)&#xff1a;当连续触发事件时&#xff0…...

RAGFlow:基于OCR和文档解析的下一代 RAG 引擎

一、引言 在人工智能的浪潮中&#xff0c;检索增强生成&#xff08;Retrieval-Augmented Generation&#xff0c;简称RAG&#xff09;技术以其独特的优势成为了研究和应用的热点。RAG技术通过结合大型语言模型&#xff08;LLMs&#xff09;的强大生成能力和高效的信息检索系统…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

给网站添加live2d看板娘

给网站添加live2d看板娘 参考文献&#xff1a; stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下&#xff0c;文章也主…...

k8s从入门到放弃之HPA控制器

k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率&#xff08;或其他自定义指标&#xff09;来调整这些对象的规模&#xff0c;从而帮助应用程序在负…...

面试高频问题

文章目录 &#x1f680; 消息队列核心技术揭秘&#xff1a;从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"&#xff1f;性能背后的秘密1.1 顺序写入与零拷贝&#xff1a;性能的双引擎1.2 分区并行&#xff1a;数据的"八车道高速公路"1.3 页缓存与批量处理…...