当前位置: 首页 > news >正文

逻辑优化基础-rewrite

简介

逻辑综合中的rewrite算法是一种常见的优化算法,其主要作用是通过对逻辑电路的布尔函数进行等效变换,从而达到优化电路面积、时序和功耗等目的。本文将对rewrite算法进行详细介绍,并附带Verilog代码示例。

一、算法原理

rewrite算法的核心思想是通过布尔代数中的等价变换来达到电路优化的目的。具体而言,算法将电路的原始布尔函数通过一系列等价变换转化为更简单的布尔函数,从而达到优化的目的。

二、算法流程

rewrite算法的流程如下所示:

Created with Raphaël 2.3.0开始输入电路的原始布尔函数根据规则库中定义的等价变换规则,将原始布尔函数转化为一个或多个新的布尔函数对新的布尔函数重复上述步骤,直到布尔函数无法继续化简为止输出化简后的布尔函数结束

具体来说,rewrite算法通过一系列等价变换规则将布尔函数转化为其等效的形式,例如如下所示:

同一律: A+A=A; A*1=A;
零元素: A+0=A; A*0=0;
吸收律: A+AB=A; A(A+B)=A;
分配律: A*(B+C)=AB+AC;
德摩根定律: ~(A+B)=~A~B; ~(AB)=~A+~B;
布尔恒等式: A+~A=1; A*~A=0;
交换律: A+B=B+A; AB=BA;
结合律: A+(B+C)=(A+B)+C; A*(BC)=(AB)*C;
分配律的逆定理: (A+B)C=(AC)+(B*C);
吸收律的逆定理: A+(AB)=A; A(A+B)=A。

通过这些等价变换规则,rewrite算法可以将一个布尔函数化简为其最简形式,从而达到电路优化的目的。

3. 示例

假设我们有一个简单的逻辑电路,其功能等价于两个输入a和b做异或运算,输出结果为c:

module xor_gate(input a, b, output c);assign c = a ^ b;
endmodule

我们可以使用逻辑综合中的rewrite算法对这个电路进行优化,从而得到一个更为简单的电路。

具体来说,我们可以应用一个rewrite规则:将异或门替换为两个AND门、一个OR门和两个NOT门的等效电路。下面是应用这个规则后的Verilog代码:

module xor_to_and_or(input a, b, output c);wire not_a, not_b, and_a_b, and_not_a_not_b, or_a_b;assign not_a = ~a;assign not_b = ~b;assign and_a_b = a & b;assign and_not_a_not_b = not_a & not_b;assign or_a_b = and_not_a_not_b | and_a_b;assign c = ~or_a_b;
endmodule

然后,我们可以在原始的xor_gate模块中,使用新的xor_to_and_or模块来实现优化后的电路,如下所示:

module xor_gate(input a, b, output c);xor_to_and_or rule(.a(a), .b(b), .c(c));
endmodule

通过这个优化,我们将一个异或门转化为了两个AND门、一个OR门和两个NOT门的电路结构,从而实现了对电路的优化,事实上这是一个反向的 “优化”。

当然,这只是一个简单的例子,实际应用中rewrite算法的规则和应用方法可能会更加复杂和多样化,需要根据具体的设计需求和约束来确定。同时,需要注意电路优化可能会对电路的性能、功耗、可靠性等方面产生影响,需要进行综合分析和评估。

了解ABC中的rewriting,请参考博客:【逻辑综合知识点总结】

相关文章:

逻辑优化基础-rewrite

简介 逻辑综合中的rewrite算法是一种常见的优化算法,其主要作用是通过对逻辑电路的布尔函数进行等效变换,从而达到优化电路面积、时序和功耗等目的。本文将对rewrite算法进行详细介绍,并附带Verilog代码示例。 一、算法原理 rewrite算法的…...

案例27-单表从9个更新语句调整为2个

目录 一:背景介绍 二:思路&方案 三:过程 1.项目结构 2.准备一个普通的maven项目,部署好mysql数据库 3.在项目中引入pom依赖 5.编写MyBitis配置文件 6.编写Mysql配置类 7.编写通用Update语句 8.项目启动类 四:总…...

Wordpress paid-memberships-pro plugins CVE-2023-23488未授权SQLi漏洞分析

目录 1.漏洞概述 2.漏洞等级 3.调试环境 4.漏洞代码 5 POC 1.漏洞概述 WordPress插件paid-memberships-pro版本<2.9.8中,容易受到REST路由“/pmpro/v1/order”的“code”参数中未验证的SQL注入漏洞的影响。攻击者可进行SQLi盲注,从而获取数据库权限。 CVE:...

【JavaWeb篇】JSTL相关知识点总结

目录 为什么会有JSTL&#xff1f; 什么是JSTL&#xff1f; 如何理解JSTL标准标签库呢&#xff1f; 如何使用JSTL&#xff1f; 第一步&#xff1a;引入JSTL标签库对应的jar包。 第二步&#xff1a;在JSP中引入要使用标签库。&#xff08;使用taglib指令引入标签库。&#x…...

【蓝桥杯刷题】坑爹的负进制转换

【蓝桥杯刷题】——坑爹的负进制转换&#x1f60e;&#x1f60e;&#x1f60e; 目录 &#x1f4a1;前言&#x1f31e;&#xff1a; &#x1f49b;坑爹的负进制转换题目&#x1f49b; &#x1f4aa; 解题思路的分享&#x1f4aa; &#x1f60a;题目源码的分享&#x1f6…...

react+antdpro+ts实现企业级项目二:Strapi及认证登陆模块

在上一章节中&#xff0c;我们已经成功创建并登陆了系统&#xff0c;现在需要为系统添加权限和登录认证&#xff0c;以提高系统的安全性、数据保护、个性化服务和用户体验。此外&#xff0c;添加权限和登录认证还可以方便管理员进行用户和授权管理。为了快速开发前端&#xff0…...

Android ANR trace日志如何导出

什么是ANR &#xff1f;上网搜索&#xff0c;一搜一大片&#xff0c;我就说个很容易识别的字眼&#xff0c;XXXAPP无响应 ANR trace日志如何导出&#xff1f;使用ADB命令&#xff1a; adb pull data/anr/trace.txt 你要存放的路径。查看ANR报错位置全局搜索你APP的包名&#x…...

Windows SSH 配置和SCP的使用

使用用户界面安装 ssh 功能 要在 Windows 10/11 上启用 SSH 服务器&#xff0c;请按照以下步骤操作&#xff1a; 按“Windows 键 I”打开“设置”菜单&#xff0c;然后选择“应用程序”。在左侧菜单栏中选择“应用和功能”。从列表中选择“可选功能”。 点击“添加功能”按钮…...

liunx 安装redsi和连接

liunx 安装redsi和连接 下载 &#xff08;https://download.redis.io/releases/&#xff09; 上传到 /usr/local目录 解压 tar -xvf redis-5.0.14.tar.gz 切换到 cd ./redis-5.0.14 编译 make 安装 make install 默认安装目录 /usr/local/bin/ 修改 ./redis-5.0.14/reds…...

接口里面可以写实现方法吗【可以】 、接口可以多继承吗【可以】

比如下面这道题&#xff1a; 问: 接口里面可以写方法吗&#xff1f; 答: 当然可以啊&#xff0c;默认就是抽象方法。 . 问&#xff1a; 那接口里面可以写实现方法吗&#xff1f; 答&#xff1a; 不可以&#xff0c;所有方法必须是抽象的。 . 问&#xff1a; 你确定吗&#xff1…...

【YOLOv8/YOLOv7/YOLOv5/YOLOv4/Faster-rcnn系列算法改进NO.57】引入可形变卷积

文章目录前言一、解决问题二、基本原理三、​添加方法四、总结前言 作为当前先进的深度学习目标检测算法YOLOv8&#xff0c;已经集合了大量的trick&#xff0c;但是还是有提高和改进的空间&#xff0c;针对具体应用场景下的检测难点&#xff0c;可以不同的改进方法。此后的系列…...

统计学习--三种常见的相关系数

1&#xff09;Pearson积差相关系数&#xff1a;用于量度两个变量X和Y之间的线性相关。它具有1和-1之间的值&#xff0c;其中1是总正线性相关性&#xff0c;0是非线性相关性&#xff0c;并且-1是总负线性相关性。Pearson相关系数的一个关键数学特性是它在两个变量的位置和尺度的…...

基于Django4.1.4的入门学习记录

基于Django4.1.4的入门学习记录Django创建Django项目创建工程工程目录说明运行开发服务器settings.py配置文件应用的创建创建应用模块应用模块文件说明App应用配置注册安装子应用数据模型ORM概述定义模型类生成数据库表查看数据库文件Admin管理工具管理界面本地化创建管理员注册…...

C++ Butterworth N阶滤波器设计

介绍一个 Butterworth Nth 滤波器设计系数的函数&#xff0c;像 Matlab 函数一样的&#xff1a; [bl,al]butter(but_order,Ws); 和 [bh,ah]butter(but_order,2*bandwidth(1)/fs,high);rtfilter 在 Ububtu 中&#xff0c;容易找到&#xff1a; $ aptitude search ~dbutterwo…...

UXP下不用任何框架创建自己的插件并试运行

在上一篇文章中《Windows下vue框架下的UXP插件开发环境搭建及程序试运行》&#xff0c;搭建的是利用vue框架进行开发的UXP开发环境&#xff0c;而且是把官方的案例插件直接添加进UDT&#xff0c;下面要说的是不利用任何js的框架创建和试运行自己的UXP插件程序&#xff0c;这样来…...

mac修改国内源快速安装brew

我是参考了清华源官网&#xff0c;有任何困惑直接访问该网址即可。这里给出精简版。 1. 更改镜像到~/.zshrc 终端添加方式 echo export HOMEBREW_API_DOMAIN"https://mirrors.tuna.tsinghua.edu.cn/homebrew-bottles/api" >> ~/.zshrcecho export HOMEBREW_…...

Me-and-My-Girlfriend-1靶场通关

Me-and-My-Girlfriend-1靶场通关 靶机ip:192.168.112.135 信息收集 端口&#xff1a;22、80 还是从80WEB服务器端口入手 对服务器目录进行扫描&#xff0c;扫出以下目录 访问80端口WEB服务&#xff0c;显示一段文字只允许本地用户访问。 一眼伪造ip&#xff0c;查看页面…...

2.6 棋盘覆盖

在一个2*x2‘个方格组成的棋盘中&#xff0c;若怡有一个方格与其他方格不同&#xff0c;则称该方格为特殊方格&#xff0c;且称该棋盘为一特殊棋盘。显然&#xff0c;特殊方格在棋盘上出现的位置有 4种情形因而对任何k0&#xff0c;有4‘种特殊棋盘。图2-4 申的特殊棋益是12时 …...

JMU软件20 大数据技术复习(只写了对比18提纲的变动部分)

原博主 博客主页&#xff1a;https://xiaojujiang.blog.csdn.net/ 原博客链接&#xff1a;https://blog.csdn.net/qq_43058685/article/details/117883940 本复习提纲只适用于JMU软件工程大数据课程&#xff08;ckm授课&#xff09; 具体内容参考老师提纲的考纲&#xff0c;18和…...

MySQL底层存储B-Tree和B+Tree原理分析

1.B-Tree的原理分析 &#xff08;1&#xff09;什么是B-Tree B-树&#xff0c;全称是 Balanced Tree&#xff0c;是一种多路平衡查找树。 一个节点包括多个key (数量看业务)&#xff0c;具有M阶的B树&#xff0c;每个节点最多有M-1个Key。 节点的key元素个数就是指这个节点能…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请&#xff0c;不同级别的经理有不同的审批权限&#xff1a; // 抽象处理者&#xff1a;审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...