当前位置: 首页 > news >正文

gemini1.5 API调用

https://ai.google.dev/pricing?hl=zh-cn

查询可用的model

https://generativelanguage.googleapis.com/v1beta/models?key=xxx

使用postman调用

https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-pro-latest:generateContent?key=xxx

 

https://ai.google.dev/models/gemini?hl=zh-cn 

 

人工智能学习网站:

https://chat.xutongbao.top

相关文章:

gemini1.5 API调用

https://ai.google.dev/pricing?hlzh-cn 查询可用的model https://generativelanguage.googleapis.com/v1beta/models?keyxxx 使用postman调用 https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-pro-latest:generateContent?keyxxx https://ai.google…...

C++从入门到精通——const与取地址重载

const与取地址重载 前言一、const正常用法const成员函数问题const对象可以调用非const成员函数吗非const对象可以调用const成员函数吗const成员函数内可以调用其它的非const成员函数吗非const成员函数内可以调用其它的const成员函数吗总结 二、取地址及const取地址操作符重载概…...

手写spring IOC底层源码来模拟spring如何利用多级缓存解决循环依赖的问题

在文章开始之前,先来看一张spring IOC加载过程的脑图吧 Spring IOC的加载过程 首先,当我们去new了一个applicationContext,它底层呢就会把我们配置的bean进行扫描,然后创建成一个一个的beanDefinition放在我们的beanDefinitionMap中,此时就有了一切创造bean的原料信…...

C++11 Thead线程和线程池

参考资料&#xff1a; 2、5.lock_guard 与 std::unique_lock-陈子青的编程学习课堂 (seestudy.cn) 3、C11 多线程编程-小白零基础到手撕线程池_哔哩哔哩_bilibili 一、 C11 Thead线程库的基本使用 # include <thread> std::thread t(function_name, args...); // 线…...

Windows版Apache 2.4.59解压直用(免安装-绿色-项目打包直接使用)

windows下Apache分类 Apache分为 安装版和解压版 安装版: 安装方便&#xff0c;下一步------下一步就OK了&#xff0c;但重装系统更换环境又要重新来一遍&#xff0c;会特别麻烦 解压版&#xff08;推荐&#xff09;&#xff1a; 这种方式&#xff08;项目打包特别方便&#x…...

刀具表面上的微结构

刀具表面微结构通常指在刀具表面对特定功能设计的微观纹理&#xff0c;这些纹理可以是沟槽、凹坑、凸起或任何其他形式的微观图案。这些微结构的设计和应用是为了改善刀具的切削性能&#xff0c;减少切削力和切削温度&#xff0c;提高切削效率和精度&#xff0c;同时降低切削液…...

css3实现微信扫码登陆动画

在做微信扫码登陆时&#xff0c;出现一个背景光图上下扫码动画&#xff0c;用css3图片实现。 实现原理&#xff1a; 1.准备一个渐变的背景.png图 2.css动画帧实现动画 看效果&#xff1a; css代码&#xff1a; #wx-scan{position: absolute;top:0px;left: 50%;z-index: 3;ma…...

vue3 导入excel数据

所需包 "xlsx": "^0.18.5"页面导入包 import * as XLSX from xlsx; import {genFileId, UploadProps, UploadRawFile,ElTable } from element-plus;页面 <el-upload accept".xlsx" :on-change"changeExcel" :on-exceed"ha…...

C# linq 根据多字段动态Group by

实现类&#xff1a; public static class LinqHepler {/// <summary>/// 根据单个字段动态Group/// </summary>/// <typeparam name"T"></typeparam>/// <param name"source"></param>/// <param name"prop…...

C语言学习/复习22----阶段测评编程题

一、阶段测评练习 题1&#xff1a; 题2&#xff1a;...

LeetCode-1766. 互质树【树 深度优先搜索 广度优先搜索 数组 数学 数论】

LeetCode-1766. 互质树【树 深度优先搜索 广度优先搜索 数组 数学 数论】 题目描述&#xff1a;解题思路一&#xff1a;DFS 中记录节点值的深度和编号&#xff0c;回溯写法。关键点是1 < nums[i] < 50解题思路二&#xff1a;0解题思路三&#xff1a;0 题目描述&#xff1…...

“数据安全服务能力”评定资格认证!不容错过

数据安全服务能力评定是指对数据安全服务提供商从事数据安全服务综合能力的评定&#xff0c;包括技术能力、服务能力、质量保证能力、人员构成与素质、经营业绩、资产状况等要素。 一、能力评定类型与等级 数据安全服务能力分为二个类型&#xff1a;数据安全评估、数据安全建…...

【MATLAB 分类算法教程】_3麻雀搜索算法优化支持向量机SVM分类 - 教程和对应MATLAB代码

分类代码案例3:麻雀搜索算法优化支持向量机SVM分类 - MATLAB完全代码教程 1. 初始化代码2.读取数据代码3.数据预处理代码4.利用麻雀搜索算法SSA求解最佳的SVM参数c和g代码5.根据最佳的参数进行SVM模型训练代码6.SVM模型预测代码7.准确率分析以及分类结果对比作图代码本文以红酒…...

利用机器学习库做动态定价策略的例子

动态定价是一个复杂的问题&#xff0c;涉及到市场需求、库存、竞争对手行为、季节性因素等多个变量。在实际应用中&#xff0c;动态定价通常需要复杂的模型和大量的数据分析。我选择使用Python&#xff08;Golearn库&#xff09;进行机器学习模型的训练和部署&#xff0c;而将G…...

Tcpdump -r 解析pcap文件

当我们使用命令抓包后&#xff0c;想在命令行直接读取筛选怎么办&#xff1f;-r参数就支持了这个 当你使用 tcpdump 的 -r 选项读取一个之前捕获的数据包文件&#xff0c;并想要筛选指定 IP 地址和端口的包时&#xff0c;你可以在命令中直接加入过滤表达式。这些过滤表达式可以…...

[dvwa] sql injection(Blind)

blind 0x01 low 1’ and length(version()) 6 # syntax: substr(string , from<start from 1>, cut length) 1’ and substr(version(),1,1) ‘5’ # 1’ and substr(version(),2,1) ‘.’ # 1’ and substr(version(),3,1) ‘7’ # 1’ and substr(version(),4,…...

linux 挂载云盘 NT只能挂载2T,使用parted挂载超过2T云盘

一、删除原来挂载好的云盘和分区 1、查看挂载号的云盘 fdisk -l 发现我们有5千多G但是只挂载了2T&#xff0c;心里非常的慌张&#xff01;十分的不爽&#xff01; 好&#xff0c;我们把它干掉&#xff0c;重新分区&#xff01; 2、解除挂载 umount /homeE 没保存跳转到&…...

用Skimage学习数字图像处理(021):图像特征提取之线检测(下)

本节是特征提取之线检测的下篇&#xff0c;讨论基于Hough变换的线检测方法。首先简要介绍Hough变换的基本原理&#xff0c;然后重点介绍Skimage中含有的基于Hough变换的直线和圆形检测到实现。 目录 10.4 Hough变换 10.4.1 原理 10.4.2 实现 10.4 Hough变换 Hough变换&…...

ArduPilot飞控之Gazebo + SITL + MP的Jetson Orin环境搭建

ArduPilot飞控之Gazebo SITL MP的Jetson Orin环境搭建 1. 源由2. Linux环境整理3. 安装Gazebo环境3.1 安装Gazebo3.2 安装插件3.3 配置插件3.4 测试Gazebo 4. 安装Arudpilot-SITL环境4.1 克隆工程4.2 编译准备4.3 环境配置4.4 配置编译4.5 测试运行 5. 测试运行6. 参考资料 1…...

前端错误监控的方法有哪些

前端错误监控是指通过各种手段收集、分析和处理前端应用运行中发生的错误 常用的前端错误监控的方法有 使用 try catch 方法 捕获特定代码块中的错误多用于处理特定函数或代码段可能抛出的异常&#xff0c;尤其是异步代码网络请求错误监控 promise.catchtry catch全局错误处理…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...